Bending properties of textile reinforced concrete sandwich beams with gypsum and calcium silicate core

2020 ◽  
pp. 109963622093556
Author(s):  
Smitha Gopinath ◽  
Ramesh Gopal ◽  
E Lavanya

Sandwich systems are gaining prominence because they offer thermal insulation in many building structures. There is a growing interest in better understanding the behavior of sandwich structures, as well as there is a need to monitor and predict the consequences of the limitations and weaknesses inherent in their design. The aim of this study is to evaluate the effect of two types of core materials on the bending properties of textile reinforced concrete (TRC) sandwich beams. In TRC, bi-directional glass textiles were used as reinforcement along with fine grained cementitious binder. TRC sandwich beam consisted of gypsum or calcium silicate panels with different density as core and TRC as skins. The stress transfer between skin and core was attained using adhesive tension without the use of mechanical anchors or adhesives. The bending properties of TRC sandwich beams including the effect of number of layers of textile in the TRC skins and independent behavior of core materials were investigated using three-point bending test. The properties such as flexural strength, toughness and residual strength have been evaluated for all specimens. Feasibility of using ASTM guidelines has been explored in estimating the toughness of various TRC systems. The general outcomes of this investigation promise a good influence for the application of gypsum and calcium silicate as core material for sandwich structures.

Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2127
Author(s):  
Richard Fürst ◽  
Eliška Fürst ◽  
Tomáš Vlach ◽  
Jakub Řepka ◽  
Marek Pokorný ◽  
...  

Textile-reinforced concrete (TRC) is a material consisting of high-performance concrete (HPC) and tensile reinforcement comprised of carbon roving with epoxy resin matrix. However, the problem of low epoxy resin resistance at higher temperatures persists. In this work, an alternative to the epoxy resin matrix, a non-combustible cement suspension (cement milk) which has proven stability at elevated temperatures, was evaluated. In the first part of the work, microscopic research was carried out to determine the distribution of particle sizes in the cement suspension. Subsequently, five series of plate samples differing in the type of cement and the method of textile reinforcement saturation were designed and prepared. Mechanical experiments (four-point bending tests) were carried out to verify the properties of each sample type. It was found that the highest efficiency of carbon roving saturation was achieved by using finer ground cement (CEM 52.5) and the pressure saturation method. Moreover, this solution also exhibited the best results in the four-point bending test. Finally, the use of CEM 52.5 in the cement matrix appears to be a feasible variant for TRC constructions that could overcome problems with its low temperature resistance.


2017 ◽  
Vol 21 (3) ◽  
pp. 865-894 ◽  
Author(s):  
AR Nazari ◽  
H Hosseini-Toudeshky ◽  
MZ Kabir

In this paper, the load-carrying capacity and failure mechanisms of sandwich beams and panels with elastomeric foam core and composite laminate face sheets are investigated. For this purpose, the flexural behavior of laminated composite beams and panels (applied as face sheets) is firstly investigated under three-point bending and central concentrated loads, respectively. Then, the same examination is conducted for the sandwich beams and panels, in which the proposed elastomeric foam is utilized as the core material. It is shown that the failure mechanisms which are associated to the core in the sandwich structures with crushable foams are not considered in the examined sandwich structures. The collapse of the sandwich specimens, examined here, is observed due to the failure of the skins in some steps. By multi-step collapse of these specimens via separately failure of the top and bottom skins, a considerable amount of energy is absorbed between these steps. Due to non-brittle behavior of the core material under loading, a large compression resistance is observed after failure of the top skin which led to the recovery of the load-carrying capacity in the sandwich beams. A similar behavior for the sandwich panels led to the increase of the ultimate strength after appearance of the failure lines on the top skin. The general outcomes of this investigation promise a good influence for the application of elastomeric foam as core material for sandwich structures.


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3856
Author(s):  
Young-Jun You ◽  
Hyeong-Yeol Kim ◽  
Gum-Sung Ryu ◽  
Kyung-Taek Koh ◽  
Gi-Hong Ahn ◽  
...  

Textile reinforced concrete (TRC) has widely been used for strengthening work for deteriorated reinforced concrete (RC) structures. The structural strengthening often requires accelerated construction with the aid of precast or prefabricated elements. This study presents an innovative method to strengthen an RC slab-type element in flexure using a precast panel made of carbon TRC. A total of five RC slabs were fabricated to examine the flexural strengthening effect. Two of them were strengthened with the precast panel and grouting material and another set of two slabs was additionally strengthened by tensile steel reinforcement. The full-scale slab specimens were tested by a three-point bending test and the test results were compared with the theoretical solutions. The results revealed that the ultimate load of the specimens strengthened with the TRC panel increased by at least 1.5 times compared to that of the unstrengthened specimen. The application of the precast TRC panel and grouting material for the strengthening of a prototype RC structure verified its outstanding constructability.


2018 ◽  
Vol 760 ◽  
pp. 158-163 ◽  
Author(s):  
Tomáš Vlach ◽  
Lenka Laiblová ◽  
Michal Ženíšek ◽  
Jakub Řepka ◽  
Petr Hájek

This paper presents a model of small experimental facade panel using four-point bending test. The facade panel with dimensions 100 x 360 mm and thickness approximately 18 mm was slightly reinforced using two layers of impregnated technical fabric from AR-glass roving. The amount of reinforcement in cross-sectional area of the concrete element is small and it is a reason of plastic joints initiation under the loading supports. The purpose of this experiment was validation of all used material parameters from the previous research in the program for nonlinear analysis of concrete and reinforced concrete Atena Engineering. For slightly reinforced concrete elements are monitored parameters better visible especially interaction between reinforcement and used concrete. The load transfer to the concrete element from the testing machine is typically modeled using some small steel plate. This paper shows the difference in results if we insert another flexible plate between the steel plate and the concrete element with a small defined stiffness.


Author(s):  
Cihan Kaboglu

Sandwich structures are popular in applications in which the weight of the component affects the efficiency, especially in the aviation and aerospace industries. This study aims to understand the impact behaviour of sandwich structures with different core materials. Sandwich structures are manufactured with glass fibre reinforced polymer skins and balsa wood, polyethylene terephthalate (PET) and polyvinyl chloride (PVC) core through resin infusion under flexible tools. Three different core materials were tested and compared using the damaged area of the back face of the sample. The effect of the core materials on the mechanical behaviour of the structures is crucial. The results showed that the microstructure of the core materials plays an important role, because althoughthe density of balsa wood is greater than the density of PET and PVC, the structures having PVC and PET as core materials undergo less damage than those having balsa wood as a core material. Keywords: Sandwich composite, impact behaviour, core materials.


2016 ◽  
Vol 827 ◽  
pp. 227-230
Author(s):  
Ondřej Holčapek

Presented contribution deals with using textile reinforced concrete containing newly invented high strength cement matrix for strengthening concrete structures. The issue of old concrete ́s surface interaction with newly applied slim layer of textile reinforced concrete is investigated and verified by bending test. Water to binder ration under 0.3, maximum size of used silica sand 1.2 mm, and compressive strength over 100 MPa characterize used fine grain cement matrix. Over 12 months old beams with dimension 100 x 100 x 400 mm made from ordinary concrete were used for strengthening during performed experimental program. Strengthening took place on bending side. Different number (1, 3 and 5) of textile fabrics made from alkali-resistant glass (surface density 275 g/m2) was applied into slim layer of cement composite. Increasing number of used fabrics leads to different failure mode due shearing force action.


2020 ◽  
Vol 71 (1) ◽  
pp. 18-26
Author(s):  
Mai Bui Thi Thanh ◽  
Cuong Nguyen Huy ◽  
Quang Ngo Dang ◽  
Tai Dinh Huu

Textile-reinforced concrete (TRC) is a new composite material made of high-strength textiles embedded within fine grained concrete (FGC). The application of TRC leads to the design of thin and slender structures or for repairing and strengthening of existing structural members. Autoclaved aerated concrete (AAC) is an ultra-lightweight concrete, which can be combined with high strength TRC to form some kinds of precast curtain panels in construction. The concept of the TRC-AAC panel is based on the theory of sandwich construction with strong and stiff skins, like TRC layers, bonded to a lightweight AAC core. The resulting hybrid TRC-AAC panel can be used as structural or non-structural member for the housing construction. In this paper, the flexural and shear performance of hybrid TRC-AAC sandwich panels is presented by means of experimental results. The sandwich panels use three layers of different materials: TRC for the tensile layer, AAC for the core material and FGC for the compressive layer. Three different types of glass textile were used as reinforcements in the TRC layers.


2016 ◽  
Vol 879 ◽  
pp. 2419-2427 ◽  
Author(s):  
Simon M. Brückmann ◽  
Horst E. Friedrich ◽  
Michael Kriescher ◽  
Gundolf Kopp ◽  
Roman Gätzi

On modern vehicles, the demand is made to be in every respect as efficient as possible. A technical method to increase energetic efficiency is to reduce the vehicle mass through the implementation of lightweight construction measures. The energy consumption decreases by that and the vehicle dynamics behavior of conventionally and alternatively respectively electrically powered vehicles increases. In the department Lightweight and Hybrid Design Methods of the Institute of Vehicle Concepts in Stuttgart in collaboration with 3A Composite Core Materials, a method which allows to realize sandwich structures for automotive structural applications analytically and conceptually, is developed. The development method based on material and component testing and material values would be determined at different loads, for example in pressure and in-plane tests. These values are transmitted into the analytical determination of so called failure mode maps to derive appropriate sandwich structures. With novel sandwich structures the objectives of high structural stiffness and strength are tracked, as well as a high level of energy absorption potential. By function integrating the potential of lightweight construction, depending on the energy absorption per structural weight, can be further increased. Accompanying tests on generic structures are made to validate the failure behavior. Also the influence of core material on the deformation behavior is examined. The results from the tests are transferred to a vehicle front structure of a planned lightweight vehicle of class L7E called "Safe Light Regional Vehicle" (SLRV). The behavior of the structure is examined in static and dynamic tests. The energy absorbing capacity can be further increased by geometric optimization and the use of different core materials. The research on sandwich materials is part of the research project Next Generation Car (NGC) of the DLR and represents in terms of the new vehicle concept SLRV in sandwich design a novel vehicle concept of this joint project.


2015 ◽  
Vol 95 ◽  
pp. 675-685 ◽  
Author(s):  
Isabella Giorgia Colombo ◽  
Matteo Colombo ◽  
Marco di Prisco

Sign in / Sign up

Export Citation Format

Share Document