scholarly journals Temporal Variations and Potential Source Areas of Fine Particulate Matter in Bangkok, Thailand

2020 ◽  
Vol 13 ◽  
pp. 117862212097820
Author(s):  
Suwimon Kanchanasuta ◽  
Sirapong Sooktawee ◽  
Aduldech Patpai ◽  
Pisit Vatanasomboon

Particulate matter (PM) less than 2.5 micron (PM2.5) issue is 1 of the important targets of concern by the United Nations’ Sustainable Development Goals. Bangkok is a megacity and facing air pollution problems. This study analyzed PM, PM2.5 and PM less than 10 micron (PM10), monitoring data from stations located in Bangkok, and aimed to present their variations in diurnal, weekly, and intra-annual timescales. High PM concentrations are related to calm wind. The diurnal variation of PM2.5/PM10 suggested a greater accumulation of PM2.5 than PMcoarse during the low wind speed. Potential source areas affecting PM rising at each monitoring station were identified using statistical technique, bivariate polar plot, and conditional bivariate probability function. Results showed that Ratchathewi District Monitoring Station identified 3 potential source areas related to emissions from transportation sources creating rising PM concentrations. The first potential source was located in the northwest direction, namely, the Rama VI Road close to the conjunction with Ratchawithi Road. The second potential source area was located around the cross-section between Phaya Thai Road and Rama I Road, while the third was located at the intersection of the Phaya Thai Road to Yothi Street and Rang Nam Road. These potential source areas constitute useful information for managing and reducing PM.

2017 ◽  
Vol 17 (16) ◽  
pp. 9945-9964 ◽  
Author(s):  
Yunhua Chang ◽  
Congrui Deng ◽  
Fang Cao ◽  
Chang Cao ◽  
Zhong Zou ◽  
...  

Abstract. Carbonaceous aerosols are major chemical components of fine particulate matter (PM2. 5) with major impacts on air quality, climate change, and human health. Gateway to fast-rising China and home of over twenty million people, Shanghai throbs as the nation's largest mega city and the biggest industrial hub. From July 2010 to December 2014, hourly mass concentrations of ambient organic carbon (OC) and elemental carbon (EC) in the PM2. 5 fraction were quasi-continuously measured in Shanghai's urban center. The annual OC and EC concentrations (mean ±1σ) in 2013 (8.9 ± 6.2 and 2.6 ± 2.1 µg m−3, n =  5547) and 2014 (7.8 ± 4.6 and 2.1 ± 1.6 µg m−3, n =  6914) were higher than those of 2011 (6.3 ± 4.2 and 2.4 ± 1.8 µg m−3, n =  8039) and 2012 (5.7 ± 3.8 and 2.0 ± 1.6 µg m−3, n =  4459). We integrated the results from historical field measurements (1999–2012) and satellite observations (2003–2013), concluding that carbonaceous aerosol pollution in Shanghai has gradually reduced since 2006. In terms of monthly variations, average OC and EC concentrations ranged from 4.0 to 15.5 and from 1.4 to 4.7 µg m−3, accounting for 13.2–24.6 and 3.9–6.6 % of the seasonal PM2. 5 mass (38.8–94.1 µg m−3), respectively. The concentrations of EC (2.4, 2.0, 2.2, and 3.0 µg m−3 in spring, summer, fall, and winter, respectively) showed little seasonal variation (except in winter) and weekend–weekday dependence, indicating EC is a relatively stable constituent of PM2. 5 in the Shanghai urban atmosphere. In contrast to OC (7.3, 6.8, 6.7, and 8.1 µg m−3 in spring, summer, fall, and winter, respectively), EC showed marked diurnal cycles and correlated strongly with CO across all seasons, confirming vehicular emissions as the dominant source of EC at the targeted site. Our data also reveal that both OC and EC showed concentration gradients as a function of wind direction (WD) and wind speed (WS), generally with higher values associated with winds from the southwest, west, and northwest. This was consistent with their higher potential as source areas, as determined by the potential source contribution function (PSCF) analysis. A common high-potential source area, located along the middle and lower reaches of the Yangtze River instead of northern China, was pinpointed during all seasons. These results demonstrate that the measured carbonaceous aerosols were driven by the interplay of local emissions and regional transport.


2019 ◽  
Vol 2 (5) ◽  
pp. 130-137
Author(s):  
Huy Huu Duong ◽  
Chi Doan Thien Nguyen ◽  
Phu Ly Sy Nguyen ◽  
Hien Thi To

Since 2013, the Ministry of Natural Resources and Environment published the revision of the “National Technical Regulation on Ambient Air Quality” (QCVN 05:2013/BTNMT), in which the fine particulate matter (PM2.5) was added to the QCVN. However, the status and the temporal variation of PM2.5 in Ho Chi Minh City (HCMC) have not been reported so far, especially based on the continuous and high time resolution measurements. The aim of this study was to analyze the status and the temporal variation of PM2.5 collected at the center of HCMC. Based on the composited PM2.5 data from the air monitoring station located at the University of Science, the average PM2.5 concentration was 28.0 ± 18.1 µg/m³ during 2013– 2017. The annual PM2.5 concentration in HCMC exceeded the acceptable limits of QCVN and WHO, highlighting a high human health risk. The PM2.5 concentrations showed the pronounced diurnal variation with the highest observed after the morning rush hour and the lowest during the midnight. In addition, a remarkable seasonal variation was observed with the highest and lowest PM2.5 occurring in dry and rainy seasons, respectively. This result highlighted the vital role of the rainfall events in reducing the PM2.5 level. Finally, from the analysis of the backward trajectories ending at the air monitoring station, we found that the air mass from the North and Northeast originating from China then passing through the areas (i.e. Binh Duong and Dong Nai provinces) with heavy industrial activities possessed a high PM2.5 level.


Author(s):  
Yusuf Aina ◽  
Elhadi Adam ◽  
Fethi Ahmed

The study of the concentrations and effects of fine particulate matter in urban areas have been of great interest to researchers in recent times. This is due to the acknowledgment of the far-reaching impacts of fine particulate matter on public health. Remote sensing data have been used to monitor the trend of concentrations of particulate matter by deriving aerosol optical depth (AOD) from satellite images. The Center for International Earth Science Information Network (CIESIN) has released the second version of its global PM2.5 data with improvement in spatial resolution. This paper revisits the study of spatial and temporal variations in particulate matter in Saudi Arabia by exploring the cluster analysis of the new data. Cluster analysis of the PM2.5 values of Saudi cities is performed by using Anselin local Moran’s I statistic. Also, the analysis is carried out at the regional level by using self-organizing map (SOM). The results show an increasing trend in the concentrations of particulate matter in Saudi Arabia, especially in some selected urban areas. The eastern and south-western parts of the Kingdom have significantly clustering high values. Some of the PM2.5 values have passed the threshold indicated by the World Health Organization (WHO) standard and targets posing health risks to Saudi urban population.


Atmosphere ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1203
Author(s):  
Lexuan Ye ◽  
Yungang Wang

As one of the most polluted U.S. cities, Fairbanks was reclassified as a “serious” nonattainment area by the Environmental Protection Agency (EPA) in 2017 for its fine particulate matter (PM2.5) pollution. In this study, November 2013–May 2019 observations of criteria air pollutants (NO2, SO2, CO, O3, PM2.5, and inhalable particulate matter (PM10)) and meteorological parameters (temperature, wind speed, and relative humidity) in Fairbanks were used for temporal variation and correlation analysis, with positive matrix factorization (EPA PMF 5.0) adopted for further PM2.5 source identification. All pollutants exhibited obvious seasonal trends under the influence of climatology, topography, and human activity, while abnormal patterns likely resulted from occasional emission events such as wildfires. Primary and secondary pollutants performed distinctively under similar meteorological conditions due to different decisive factors. Identified PM2.5 sources included sulfate (32.7%), wood smoke (19.3%), gasoline (18.3%), nitrate (15.7%), diesel (9.2%), soil (3.8%), and road salt (1.0%). Compared with the 2005–2012 result, sulfate and nitrate contributions had increased, while wood smoke and diesel contributions had decreased, in which emission control measures as well as a change of sampling sites could play an important role. This systematic analysis offers reference for mitigation measures and pollution prediction. Meanwhile, further field investigation is required for conclusion validation and model improvement.


2019 ◽  
Vol 19 (13) ◽  
pp. 8569-8590 ◽  
Author(s):  
Dongsheng Ji ◽  
Wenkang Gao ◽  
Willy Maenhaut ◽  
Jun He ◽  
Zhe Wang ◽  
...  

Abstract. As major chemical components of airborne fine particulate matter (PM2.5), organic carbon (OC) and elemental carbon (EC) have vital impacts on air quality, climate change, and human health. Because OC and EC are closely associated with fuel combustion, it is helpful for the scientific community and policymakers assessing the efficacy of air pollution control measures to study the impact of control measures and regional transport on OC and EC levels. In this study, hourly mass concentrations of OC and EC associated with PM2.5 were semi-continuously measured from March 2013 to February 2018. The results showed that annual mean OC and EC concentrations declined from 14.0 to 7.7 µg m−3 and from 4.0 to 2.6 µg m−3, respectively, from March 2013 to February 2018. In combination with the data of OC and EC in previous studies, an obvious decreasing trend in OC and EC concentrations was found, which was caused by clean energy policies and effective air pollution control measures. However, no obvious change in the ratios of OC and EC to the PM2.5 mass (on average, 0.164 and 0.049, respectively) was recorded, suggesting that inorganic ions still contributed a lot to PM2.5. Based on the seasonal variations in OC and EC, it appeared that higher OC and EC concentrations were still observed in the winter months, with the exception of winter of 2017–2018. Traffic policies executed in Beijing resulted in nighttime peaks of OC and EC, caused by heavy-duty vehicles and heavy-duty diesel vehicles being permitted to operate from 00:00 to 06:00 (China standard time, UTC+8, for all times throughout the paper). In addition, the fact that there was no traffic restriction in weekends led to higher concentrations on weekends compared to weekdays. Significant correlations between OC and EC were observed throughout the study period, suggesting that OC and EC originated from common emission sources, such as exhaust of vehicles and fuel combustion. OC and EC levels increased with enhanced SO2, CO, and NOx concentrations while the O3 and OC levels were enhanced simultaneously when O3 concentrations were higher than 50 µg m−3. Non-parametric wind regression analysis was performed to examine the sources of OC and EC in the Beijing area. It was found that there were distinct hot spots in the northeast wind sector at wind speeds of approximately 0–6 km h−1, as well as diffuse signals in the southwestern wind sectors. Source areas further away from Beijing were assessed by potential source contribution function (PSCF) analysis. A high-potential source area was precisely pinpointed, which was located in the northwestern and southern areas of Beijing in 2017 instead of solely in the southern areas of Beijing in 2013. This work shows that improvement of the air quality in Beijing benefits from strict control measures; however, joint prevention and control of regional air pollution in the regions is needed for further improving the air quality. The results provide a reference for controlling air pollution caused by rapid economic development in developing countries.


Atmosphere ◽  
2018 ◽  
Vol 9 (12) ◽  
pp. 501 ◽  
Author(s):  
Yujie Liu ◽  
Qi Yu ◽  
Zihan Huang ◽  
Weichun Ma ◽  
Yan Zhang

Precise source identification for ambient pollution incidents in industrial parks were often difficult due to limited measurements. Source area analysis method was one of the applicable source identification methods, which could provide potential source areas under these circumstances. However, a source area usually covered several sources and the method was unable to identify the real one. This article introduces a case study on the statistical source identification of methyl mercaptan based on the long-term measurements, in 2014, in an industrial park. A procedure for statistical source area analysis was established, which contains independent pollution episode extraction, source area calculation scenario definition, meteorological data selection, and source area statistical analysis. A total of 414 violation records were detected by five monitors inside the park. Three kinds of calculation scenarios were found and, finally, three key source areas were revealed. The typical scenarios of source area calculations were described in detail. The characteristics of the statistical source areas for all pollution episodes were examined. Finally, the applicability of the method, as well as the source of uncertainties, was discussed. This study shows that more concentrated source areas can be identified through the statistical source area method if several excessive emission sources exist in an industrial park.


2019 ◽  
Author(s):  
Dongsheng Ji ◽  
Wenkang Gao ◽  
Willy Maenhaut ◽  
Jun He ◽  
Zhe Wang ◽  
...  

Abstract. As major chemical components of airborne fine particulate matter (PM2.5), organic carbon (OC) and elemental carbon (EC) have vital impacts on air quality, climate change, and human health. Because OC and EC are closely associated with fuel combustion, it is helpful for the scientific community and policymakers assessing the efficacy of air pollution control measures to study on the impact of the control measures and regional transport on the OC and EC levels. In this study, hourly mass concentrations of OC and EC associated with PM2.5 were semi-continuously measured from March 2013 to February 2018. The results showed that annual mean OC and EC concentrations declined from 14.0 to 7.7 μg/m3 and from 4.0 to 2.6 μg/m3, respectively, from March 2013 to February 2018. In combination with the data of OC and EC in previous studies, an obvious decreasing trend in OC and EC concentrations was found, which was caused by clean energy policies and effective air pollution control measures. However, no obvious change in the ratios of OC and EC to the PM2.5 mass (on average, 0.164 and 0.049, respectively) was recorded, suggesting that inorganic ions still contributed a lot to PM2.5. Based on the seasonal variations of OC and EC, it appeared that higher OC and EC concentrations were still observed in the winter months, with the exception of winter of 2017–2018. Traffic policies executed in Beijing resulted in nighttime peaks of OC and EC, caused by heavy-duty vehicles and heavy-duty diesel vehicles being permitted to operate from 0:00 to 6:00. In addition, the fact that there was no traffic restriction in weekends led to higher concentrations in weekends compared to weekdays. Significant correlations between OC and EC were observed throughout the study period, suggesting that OC and EC originated from common emission sources, such as exhaust of vehicles and fuel combustion. OC and EC levels increased with enhanced SO2, CO and NOx concentrations while the O3 and OC levels enhanced simultaneously when O3 concentrations were higher than 50 μg/m3. Nonparametric wind regression analysis was performed to examine the sources of OC and EC in the Beijing area. It was found that there were distinct hot spots in the northeast wind sector at wind speeds of approximately 5 km/h, as well as diffuse signals in the southwestern wind sectors, highlighting probable trans-boundary transport from highly industrialized regions upwind of the Hebei province, such as Baoding, Shijiazhuang and Handan, which were the most polluted cities in China. This was consistent with their higher potential as source areas, as determined by the potential source contribution function (PSCF) analysis. A high-potential source area was precisely pinpointed, which was located in the northwestern and southern areas of Beijing in 2017 instead of solely in the southern areas of Beijing in 2013. This work shows that improvement of the air quality in Beijing benefits from strict control measures; however, joint prevention and control of regional air pollution in the regions is needed for further improving the air quality. The results provide a reference for controlling air pollution caused by rapid economic development in developing countries.


2007 ◽  
Vol 44 (1) ◽  
pp. 43-59 ◽  
Author(s):  
Nigel Atkinson

This paper develops a technique that utilizes spatial and compositional trends in granite erratics distributed across the eastern and northwestern Queen Elizabeth Islands to discriminate between glacial dispersal trains originating from the Precambrian Shield of Ellesmere Island and the Canadian mainland. The distribution of glacially transported granite erratics in the eastern and northwestern Queen Elizabeth Islands defines a coherent pattern of regional dispersal from the Precambrian Shield of eastern Ellesmere Island. Principal components and cluster analyses demonstrate that most erratics within this dispersal train cluster within the same compositional group. Other members of this group represent outcrops on eastern Ellesmere Island, which define the locations of possible source areas. However, other compositional groups, which are unique to outcrops on the mainland, are absent from this dispersal train. Collectively, these spatial and compositional trends suggest that granite erratics on southwest Ellesmere, Amund Ringnes, and Meighen islands occur within a single dispersal train that resulted from the westward expansion of the Innuitian Ice Sheet from the Precambrian Shield of eastern Ellesmere Island. This technique may determine what differences, if any, exist among the composition of granite erratics deposited by the westward expansion of the Innuitian Ice Sheet across the Queen Elizabeth Islands and those deposited by the northward expansion of the Laurentide Ice Sheet. Any such differences may be useful in determining whether granite erratics of presently unknown provenance elsewhere in the Queen Elizabeth Islands are of Laurentide or Innuitian origin.


Sign in / Sign up

Export Citation Format

Share Document