scholarly journals Examining the Spatio-temporal Dynamics of PM2.5 in Saudi Arabia Using Satellite-derived Data: A Cluster Study

Author(s):  
Yusuf Aina ◽  
Elhadi Adam ◽  
Fethi Ahmed

The study of the concentrations and effects of fine particulate matter in urban areas have been of great interest to researchers in recent times. This is due to the acknowledgment of the far-reaching impacts of fine particulate matter on public health. Remote sensing data have been used to monitor the trend of concentrations of particulate matter by deriving aerosol optical depth (AOD) from satellite images. The Center for International Earth Science Information Network (CIESIN) has released the second version of its global PM2.5 data with improvement in spatial resolution. This paper revisits the study of spatial and temporal variations in particulate matter in Saudi Arabia by exploring the cluster analysis of the new data. Cluster analysis of the PM2.5 values of Saudi cities is performed by using Anselin local Moran’s I statistic. Also, the analysis is carried out at the regional level by using self-organizing map (SOM). The results show an increasing trend in the concentrations of particulate matter in Saudi Arabia, especially in some selected urban areas. The eastern and south-western parts of the Kingdom have significantly clustering high values. Some of the PM2.5 values have passed the threshold indicated by the World Health Organization (WHO) standard and targets posing health risks to Saudi urban population.

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Ramachandran Prasannavenkatesh ◽  
Ramachandran Andimuthu ◽  
Palanivelu Kandasamy ◽  
Geetha Rajadurai ◽  
Divya Subash Kumar ◽  
...  

Research outcomes from the epidemiological studies have found that the course (PM10) and the fine particulate matter (PM2.5) are mainly responsible for various respiratory health effects for humans. The population-weighted exposure assessment is used as a vital decision-making tool to analyze the vulnerable areas where the population is exposed to critical concentrations of pollutants. Systemic sampling was carried out at strategic locations of Chennai to estimate the various concentration levels of particulate pollution during November 2013–January 2014. The concentration of the pollutants was classified based on the World Health Organization interim target (IT) guidelines. Using geospatial information systems the pollution and the high-resolution population data were interpolated to study the extent of the pollutants at the urban scale. The results show that approximately 28% of the population resides in vulnerable locations where the coarse particulate matter exceeds the prescribed standards. Alarmingly, the results of the analysis of fine particulates show that about 94% of the inhabitants live in critical areas where the concentration of the fine particulates exceeds the IT guidelines. Results based on human exposure analysis show the vulnerability is more towards the zones which are surrounded by prominent sources of pollution.


2019 ◽  
Vol 11 (18) ◽  
pp. 4984 ◽  
Author(s):  
Bazyli Czyżewski ◽  
Anna Matuszczak ◽  
Łukasz Kryszak ◽  
Andrzej Czyżewski

Fine particulate matter (PM2.5) emissions are an important global issue as air pollutants lead to approximately 7 million deaths per year (World Health Organization). In an attempt to combat this global threat, countries in the European Union (EU) allocate relatively large funds for environmental policies. The main goal of this paper is to assess the long-term efficiency of the EU countries’ environmental policy in reducing the pressure of particulates pollution on the natural environment. For this purpose, multilevel panel regression models based on seminal within–between specification are used. The models are run for a panel of 25 EU countries for the years 2004–2016. In the investigations, we tried to capture the effect of the share of utilized agricultural area (UAA) in non-urban areas of the analyzed countries, as it may potentially influence policy efficiency. It was found that environmental spending in all main categories (pollution abatement, biodiversity, R&D, and environmental protection) had a significant impact on decreasing pollution pressure; however, the policy was more efficient in countries which had a lower share of UAA in their non-urban areas. The study emphasized that the impact of “pollution abatement” expenditure may be underestimated in basic panel models.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Richard Toro Araya ◽  
Robert Flocchini ◽  
Rául G. E. Morales Segura ◽  
Manuel A. Leiva Guzmán

Measurements of carbonaceous aerosols in South American cities are limited, and most existing data are of short term and limited to only a few locations. For 6 years (2002–2007), concentrations of fine particulate matter and organic and elemental carbon were measured continuously in the capital of Chile. The contribution of carbonaceous aerosols to the primary and secondary fractions was estimated at three different sampling sites and in the warm and cool seasons. The results demonstrate that there are significant differences in the levels in both the cold (March to August) and warm (September to February) seasons at all sites studied. The percent contribution of total carbonaceous aerosol fine particulate matter was greater in the cool season (53 ± 41%) than in the warm season (44 ± 18%). On average, the secondary organic carbon in the city corresponded to 29% of the total organic carbon. In cold periods, this proportion may reach an average of 38%. A comparison of the results with the air quality standards for fine particulate matter indicates that the total carbonaceous fraction alone exceeds the World Health Organization standard (10 µg/m3) and the United States Environmental Protection Agency standard (15 µg/m3) for fine particulate matter.


2012 ◽  
Vol 12 (14) ◽  
pp. 6335-6355 ◽  
Author(s):  
U. Im ◽  
M. Kanakidou

Abstract. Megacities are large urban agglomerations with intensive anthropogenic emissions that have significant impacts on local and regional air quality. In the present mesoscale modeling study, the impacts of anthropogenic emissions from the Greater Istanbul Area (GIA) and the Greater Athens Area (GAA) on the air quality in GIA, GAA and the entire East Mediterranean are quantified for typical wintertime (December 2008) and summertime (July 2008) conditions. They are compared to those of the regional anthropogenic and biogenic emissions that are also calculated. Finally, the efficiency of potential country-based emissions mitigation in improving air quality is investigated. The results show that relative contributions from both cities to surface ozone (O3) and aerosol levels in the cities' extended areas are generally higher in winter than in summer. Anthropogenic emissions from GIA depress surface O3 in the GIA by ~ 60% in winter and ~ 20% in summer while those from GAA reduce the surface O3 in the GAA by 30% in winter and by 8% in summer. GIA and GAA anthropogenic emissions contribute to the fine particulate matter (PM2.5) levels inside the cities themselves by up to 75% in winter and by 50% (GIA) and ~ 40% (GAA), in summer. GIA anthropogenic emissions have larger impacts on the domain-mean surface O3 (up to 1%) and PM2.5 (4%) levels compared to GAA anthropogenic emissions (<1% for O3 and ≤2% for PM2.5) in both seasons. Impacts of regional anthropogenic emissions on the domain-mean surface pollutant levels (up to 17% for summertime O3 and 52% for wintertime fine particulate matter, PM2.5) are much higher than those from Istanbul and Athens together (~ 1% for O3 and ~ 6% for PM2.5, respectively). Regional biogenic emissions are found to limit the production of secondary inorganic aerosol species in summer up to 13% (non-sea-salt sulfate (nss-SO42−) in rural Athens) due to their impact on oxidant levels while they have negligible impact in winter. Finally, the responses to country-based anthropogenic emission mitigation scenarios inside the studied region show increases in O3 mixing ratios in the urban areas of GIA and GAA, higher in winter (~ 13% for GIA and 2% for GAA) than in summer (~ 7% for GIA and <1% for GAA). On the opposite PM2.5 concentrations decrease by up to 30% in GIA and by 20% in GAA with the highest improvements computed for winter. The emission reduction strategy also leads to domain-wide decreases in most primary pollutants like carbon monoxide (CO) or nitrogen oxides (NOx) for both seasons. The results show the importance of long range transport of pollutants for the air quality in the East Mediterranean. Thus, improvements of air quality in the East Mediterranean require coordinated efforts inside the region and beyond.


Author(s):  
Zhanyong Wang ◽  
Hong-Di He ◽  
Feng Lu ◽  
Qing-Chang Lu ◽  
Zhong-Ren Peng

Air quality time series near road intersections consist of complex linear and nonlinear patterns and are difficult to forecast. The backpropagation neural network (BPNN) has been applied for air quality forecasting in urban areas, but it has limited accuracy because of the inability to predict extreme events. This study proposed a novel hybrid model called GAWNN that combines a genetic algorithm and a wavelet neural network to improve forecast accuracy. The proposed model was examined through predicting the carbon monoxide (CO) and fine particulate matter (PM2.5) concentrations near a road intersection. Before the predictions, principal component analysis was adopted to generate principal components as input variables to reduce data complexity and collinearity. Then the GAWNN model and the BPNN model were implemented. The comparative results indicated that GAWNN provided more reliable and accurate predictions of CO and PM2.5 concentrations. The results also showed that GAWNN performed better than BPNN did in the capability of forecasting extreme concentrations. Furthermore, the spatial transferability of the GAWNN model was reasonably good despite a degenerated performance caused by the unavoidable difference between the training and test sites. These findings demonstrate the potential of the application of the proposed model to forecast the fine-scale trend of air pollution in the vicinity of a road intersection.


Sign in / Sign up

Export Citation Format

Share Document