scholarly journals Effect of Wastewater Discharge From Coffee Processing Plant on River Water Quality, Sidama Region, South Ethiopia

2021 ◽  
Vol 15 ◽  
pp. 117863022110610
Author(s):  
Wubalem Genanaw ◽  
Girum Gebremeskel Kanno ◽  
Dawit Derese ◽  
Mekonnen Birhanie Aregu

In Ethiopia, most of the coffee processing plants are generating large amounts of wastewater with high pollutant concentrations and discharge directly into the water bodies untreated or partially treated. The main objective of this study was to assess the effects of coffee wastewater discharged to river water quality using physicochemical parameters and macro-invertebrate indices. This study was conducted from November to the end of December 2019. Ten wastewater and river water samples were taken from coffee the processing plant and river. The macro-invertebrate samples were collected by kick sampling technique using a standard hand net. Shannon and Simpson diversity indices were examined at 3 sampling stations. The Pielou evenness index was also determined. It was found that except for TDS all the parameters of the raw wastewater and river water did not comply with the international discharge limit. The mean concentration of Faro coffee processing plant wastewater were BOD5 (2409.6 ± 173.1 mg/L), COD (4302 ± 437 mg/L), TSS (2824.6 ± 428.4 mg/L), TDS (3226 ± 623.6 mg/L), and TS (4183.3 ± 432.9 mg/L). Whereas from Bokaso coffee processing plant were BOD5 (3770 ± 604.4 mg/L), COD (4082.6 ± 921.9 mg/L), TSS (2766 ± 501.7 mg/L), TDS (3017 ± 747.6 mg/L), and TS (3874 ± 471.1 mg/L). A total of 392 macroinvertebrates belonging to 24 families and 7 orders were collected. The benthos assemblage communities in this river were 40, 56, and 296 at downstream 1, downstream 2, and upstream respectively. The value of the Simpson diversity index varies from 0.4 to 0.75. In the same manner, the value of the Shannon diversity index also varied from 0.5 to 1.36. Most of the physicochemical parameters of the raw wastewater were beyond the national and international discharge limits. The quality of Orsha river water downstream was more adversely affected compared to upstream.

2020 ◽  
Vol 6 (1) ◽  
pp. 28-32
Author(s):  
Novi Komariah ◽  
Saimul Laili ◽  
Hari Santoso

Water is a natural resource that is needed for the life of human being, even for all the creatures. Therefore, these water resources must be protected so that humans and other living things can be utilized properly. The macrofauna community defines whether the water quality is good or not. The study of the effect of river water quality on the diversity of macrofauna in the Metro river flow of Lowokwaru Subdistrict, Malang City aims to determine the effect of river water quality and to compare the diversity of macrofauna in several Metro river locations in Lowokwaru District, Malang. The method used is quantitative descriptive by calculating the Shanon Winner diversity index. The results obtained for station I amounted to 1.95 classified as lightly polluted, at station II the results were 1,007 which were classified as moderately polluted, and at station III the results were 0.69 which were classified as heavily polluted. Key Words: water quality, macro fauna, Metro river ABSTRAK Air merupakan sumber daya alam yang diperlukan untuk kebutuhan hidup orang banyak, bahkan oleh semua makhluk hidup. Oleh karena itu, sumber daya air tersebut harus di lindungi agar tetap dapat di manfaatkan dengan baik oleh manusia dan makhluk hidup lainnya. Komunitas makrofauna menentukan kualitas air baik atau tidak. Penelitian tentang pengaruh kualitas air sungai terhadap keragaman makrofauna di aliran sungai Metro Kecamatan Lowokwaru kota Malang bertujuan untuk mengetahui pengaruh kualitas air sungai dan untuk membandingkan keanekaragaman makrofauna di beberapa lokasi aliran sungai  Metro Kecamatan Lowokwaru kota Malang. Metode yang di gunakan yaitu deskriptif kuantitatif dengan melakukan perhitungan indeks keanekaragaman Shanon Winner. Indeks keanekaragaman yang di hasilkan pada stasiun I sebesar 1,95 yang tergolong tercemar ringan, pada stasiun II indeks keanekaragaman yang di hasilkan sebesar 1,007 yang tergolong tercemar sedang, dan pada stasiun III di dapat hasil indeks keanekaragaman 0,69 yang tergolong tercemar berat. Kata kunci: Kualitas air, makrofauna, sungai metro.


2021 ◽  
Vol 7 (1) ◽  
pp. 18-24
Author(s):  
Tien Zubaidah ◽  
Sulaiman Hamzani ◽  
Arifin

The self-purification capacity is an important indicator for a healthy river. Organic and inorganic pollutants from various pollutant sources, both point sources, and non-point sources, in most rivers in Banjar Regency, cause a decrease in river water quality. This study aims to identify the distribution of river water quality pollution in Banjar Regency as the upstream of the Martapura River and determine the point of self-purification. A sampling of river water using the purposive sampling technique, taking into account the criteria for pollutant sources and the distance of pollution. The results of the concentration values were analyzed using a trend analysis technique, which connected the value of the concentration of pollutant elements with the distance of pollution to identify the distribution of pollution, and to determine the distance of purification. The results showed that the self-purification ability (pH and DO) decreased in concentration at all observation points.


2019 ◽  
Vol 20 (6) ◽  
Author(s):  
KAHIRUN KAHIRUN ◽  
LAODE SABARUDDIN ◽  
MUKHTAR MUKHTAR ◽  
LAODE MUHAMMAD HARJONI KILOWASID

Abstract. Kahirun, Sabaruddin L, Mukhtar, Kilowasid LOMH. 2019. Evaluation of land use impact on river water quality using macroinvertebrates as bioindicator in Lahumoko Watershed, Buton Island, Indonesia. Biodiversitas 20: 1658-1670. The Lahumoko Watershed, a small watershed, that empties into the sea is sensitive to water quality changes due to land use changes by humans. Uncontrolled land use changes can threaten the sustainability of the river ecological functions of the watershed. It is important to examine the comparison of river water quality in locations that represent land uses. So, the objectives of this study were to reveal the impact of land use on biological water quality in rivers and to analyze the relationship between macroinvertebrates communities with parameters of biodiversity and physicochemical at the observation locations that represented land use. Biological samplings were done using a hand net with a hole size of 0.5 mm mesh, at five stations, each with three replications, with a length of 30 m of each replication, 60 minutes per station. The results of the study showed that individual abundance, family biotic index and diversity index parameters indicated that the water quality was quite good in the upstream watershed (LM1, LM2, and LM3 stations) and somewhat worse in the middle (LM4 station) and downstream of the watershed (LM5 station). The Spearman's correlation, Dendrogram, and Canonical Correspondent Analysis (CCA) showed that there were similarities among LM1, LM2 and LM3 stations, and also between LM4 and LM5 stations. Physicochemical parameters, especially the velocity and flow rate of the river flow had significant correlation with individual richness and density.    


2008 ◽  
Author(s):  
Annett B. Sullivan ◽  
Michael L. Deas ◽  
Jessica Asbill ◽  
Julie D. Kirshtein ◽  
Kenna D. Butler ◽  
...  

1994 ◽  
Vol 30 (2) ◽  
pp. 53-61 ◽  
Author(s):  
Shiyu Li ◽  
Guang Hao Chen

A mathematical model is proposed to predict the removal of dissolved organic substances and the consumption of dissolved oxygen by attached biofilms in an open-channel flow. The model combines the biofilm equations with the conventional Streeter–Phelps type equations of river water quality by considering the mass transfer of organics and oxygen in the river water through the diffusion layer into the biofilm. It is assumed that the diffusion and reaction within the biofilm are of steady-state, and follow Monod kinetics. The model is solved numerically with a trial-and-error method. The simulation results of the model for an ideal case of river flow and biofilm show that the organic removal rate and oxygen consumption rate caused by the biofilm are greater than that by suspended biomass. The effects of diffusion layer thickness, flow velocity, and biofilm thickness on the change of river water quality are discussed.


2021 ◽  
Vol 1098 (5) ◽  
pp. 052020
Author(s):  
L S Mulyani ◽  
R Mardiani ◽  
C Ardiana ◽  
S Nurkamilah

Sign in / Sign up

Export Citation Format

Share Document