scholarly journals Pencemaran Air dan Penentuan Titik Self-Purification Sungai di Kabupaten Banjar

2021 ◽  
Vol 7 (1) ◽  
pp. 18-24
Author(s):  
Tien Zubaidah ◽  
Sulaiman Hamzani ◽  
Arifin

The self-purification capacity is an important indicator for a healthy river. Organic and inorganic pollutants from various pollutant sources, both point sources, and non-point sources, in most rivers in Banjar Regency, cause a decrease in river water quality. This study aims to identify the distribution of river water quality pollution in Banjar Regency as the upstream of the Martapura River and determine the point of self-purification. A sampling of river water using the purposive sampling technique, taking into account the criteria for pollutant sources and the distance of pollution. The results of the concentration values were analyzed using a trend analysis technique, which connected the value of the concentration of pollutant elements with the distance of pollution to identify the distribution of pollution, and to determine the distance of purification. The results showed that the self-purification ability (pH and DO) decreased in concentration at all observation points.

2003 ◽  
Vol 38 (4) ◽  
pp. 607-626 ◽  
Author(s):  
Vinod Tare ◽  
Purnendu Bose ◽  
Santosh K. Gupta

Abstract In India, the implementation of river-cleaning operations through River Action Plans (RAPs) conventionally focuses on a reduction in concentrated or point sources of organic loading to the river, and is assessed by monitoring the consequent improvement in river water quality. However, in the case of Indian rivers or river stretches having substantial background pollution due to distributed or non-point loading of organic matter and nutrients, elimination of point sources of pollution may not substantially impact or improve river water quality. It is suggested that implementation of River Action Plans in India under such circumstances must be conducted using a multi-tier approach. The initial emphasis in such cases should be on the selection of priority stretches of the river, where pollution control will have maximum beneficial impact on the citizens, and interception and diversion of all concentrated or point loads of pollution from these stretches. In addition, measures to minimize non-point pollution and visible pollution to the river and initiation of riverfront restoration and development projects are necessary in these priority stretches. Such measures would result in aesthetic improvements, increase the beneficial uses of the river and its surroundings, and generate favorable public perception towards RAPs, though they may not be sufficient to enhance the river water quality to the desired levels. However, as a result of the above actions, public support for funding more expensive and longer-term river cleaning schemes, resulting in comprehensive reduction in organic and nutrient loading to the river from point and non-point sources all along its length, may be generated. The need for this alternative methodology for implementation and assessment of RAPs in India has been illustrated by taking the example of the Ganga Action Plan (GAP) and assessment of its implementation near the city of Kanpur in the state of Uttar Pradesh, India, as a test case.


2021 ◽  
Vol 15 ◽  
pp. 117863022110610
Author(s):  
Wubalem Genanaw ◽  
Girum Gebremeskel Kanno ◽  
Dawit Derese ◽  
Mekonnen Birhanie Aregu

In Ethiopia, most of the coffee processing plants are generating large amounts of wastewater with high pollutant concentrations and discharge directly into the water bodies untreated or partially treated. The main objective of this study was to assess the effects of coffee wastewater discharged to river water quality using physicochemical parameters and macro-invertebrate indices. This study was conducted from November to the end of December 2019. Ten wastewater and river water samples were taken from coffee the processing plant and river. The macro-invertebrate samples were collected by kick sampling technique using a standard hand net. Shannon and Simpson diversity indices were examined at 3 sampling stations. The Pielou evenness index was also determined. It was found that except for TDS all the parameters of the raw wastewater and river water did not comply with the international discharge limit. The mean concentration of Faro coffee processing plant wastewater were BOD5 (2409.6 ± 173.1 mg/L), COD (4302 ± 437 mg/L), TSS (2824.6 ± 428.4 mg/L), TDS (3226 ± 623.6 mg/L), and TS (4183.3 ± 432.9 mg/L). Whereas from Bokaso coffee processing plant were BOD5 (3770 ± 604.4 mg/L), COD (4082.6 ± 921.9 mg/L), TSS (2766 ± 501.7 mg/L), TDS (3017 ± 747.6 mg/L), and TS (3874 ± 471.1 mg/L). A total of 392 macroinvertebrates belonging to 24 families and 7 orders were collected. The benthos assemblage communities in this river were 40, 56, and 296 at downstream 1, downstream 2, and upstream respectively. The value of the Simpson diversity index varies from 0.4 to 0.75. In the same manner, the value of the Shannon diversity index also varied from 0.5 to 1.36. Most of the physicochemical parameters of the raw wastewater were beyond the national and international discharge limits. The quality of Orsha river water downstream was more adversely affected compared to upstream.


2018 ◽  
Vol 21 (1) ◽  
pp. 45-55 ◽  
Author(s):  
Ali Moridi

Abstract This study forms the basis and sets practical guidelines for developing river water quality management strategies for resolving conflicts related to the allocation of pollution discharge permits using bankruptcy methods. This approach was implemented by changing the concepts and considering the river self-purification potential (capacity) as an asset which is to be shared among various beneficiaries. The beneficiaries are the point sources which release their wastewater to the river with minimum treatment costs. Four commonly used bankruptcy methods in the water resources allocation literature are used here to develop new river bankruptcy solution methods for allocating pollution share to the riparian parties of river systems. For this purpose, the Qual2 K river water quality simulation model is integrated with a particle swarm optimization (PSO) model while various pollution loadings discharge policies have been determined based on the bankruptcy method. This method was employed in one of the most polluted rivers of northern Iran, which is the source of eutrophication for Anzali International Wetland. The results show that the application of this method could facilitate the conflict resolution among different beneficiaries in order to improve the conditions of river water quality.


2016 ◽  
Author(s):  
Jason P. Julian ◽  
Kirsten M. de Beurs ◽  
Braden Owsley ◽  
Robert J. Davies-Colley ◽  
Anne-Gaelle E. Ausseil

Abstract. River water quality reflects land use in the catchment (mobilizing diffuse pollution) as well as point source discharges. In New Zealand (NZ) diffuse pollution vastly outweighs point sources which have largely cleaned up over many decades. Because NZ has good geospatial data on physiographic variables, land cover and agricultural statistics, and time series on water quality at the national scale over several decades, the country is a natural laboratory for investigating water quality response to land use/disturbance and associated diffuse pollution "pressures". We interpreted water quality state and trends for the 26 years from 1989 and 2014 in the National Rivers Water Quality Network (NRWQN), consisting of 77 sites on 35 mostly large river systems with an aggregate catchment amounting to half of NZ's land area. To characterize water quality pressures, we used multiple land use datasets spanning 1990–2012, plus recently-developed 8-day land-disturbance datasets using MODIS imagery. Current state and directions of change in visual clarity and nitrate-nitrite-nitrogen provide a particularly valuable summary of impact, respectively from mobilization of fine particulate matter and soluble nutrients. We show that the greatest impact on river water quality in NZ over the 1989–2014 period is high-producing pastures with their high nutrient inputs to support high densities of livestock. While land disturbance was not itself a strong predictor of water quality, it did help explain outliers of land use-water quality relationships, especially those with large areas of plantation forest. Plantation forestry was strongly associated with water quality impacts, particularly on visual clarity and particulate nutrients when land disturbed for harvesting generated sediment runoff and nutrient mobilization. In all, our study demonstrates how interdisciplinary combinations of expertise including geospatial analysis, land management, remote-sensing, and water quality can advance understanding of broad-scale and long-term impacts of land use change on river water quality.


2008 ◽  
Author(s):  
Annett B. Sullivan ◽  
Michael L. Deas ◽  
Jessica Asbill ◽  
Julie D. Kirshtein ◽  
Kenna D. Butler ◽  
...  

1994 ◽  
Vol 30 (2) ◽  
pp. 53-61 ◽  
Author(s):  
Shiyu Li ◽  
Guang Hao Chen

A mathematical model is proposed to predict the removal of dissolved organic substances and the consumption of dissolved oxygen by attached biofilms in an open-channel flow. The model combines the biofilm equations with the conventional Streeter–Phelps type equations of river water quality by considering the mass transfer of organics and oxygen in the river water through the diffusion layer into the biofilm. It is assumed that the diffusion and reaction within the biofilm are of steady-state, and follow Monod kinetics. The model is solved numerically with a trial-and-error method. The simulation results of the model for an ideal case of river flow and biofilm show that the organic removal rate and oxygen consumption rate caused by the biofilm are greater than that by suspended biomass. The effects of diffusion layer thickness, flow velocity, and biofilm thickness on the change of river water quality are discussed.


Sign in / Sign up

Export Citation Format

Share Document