Experimental investigation of dynamic behavior of rotor-bearing system with nitrile rubber support

Author(s):  
Jian Dong ◽  
Xiaojing Wang ◽  
Jin Zhang ◽  
Jingjun Gu

Nitrile rubber (NBR) as a vibration absorber of lower elasticity modulus has a considerable contribution in the effective damping. Three kinds of journal bearings (general journal bearings, journal bearings supported on circular nitrile rubber, journal bearings supported on radial nitrile rubber) were designed and manufactured. Experiments were carried out to investigate vibration and stability of the rotor-bearing system with the above bearings. Oil whirl and the onset of instability of the system was analyzed and compared. The experimental results show that there is a significant decrease in the acceleration amplitude of the bearings embedded with nitrile rubber compared to general journal bearings. In addition, the journal bearings supported on radial nitrile rubber have better vibration damping effect than journal bearings supported on circular nitrile rubber, for there is no obvious oil whirl and asynchronous vibration, which can be verified by waterfall plots and continuous wavelet transform spectrograms. Results demonstrated that vibration energy dissipated by viscous absorbers indeed contributes to improving dynamics stability of the rotor-bearing system.

2017 ◽  
Vol 140 (2) ◽  
Author(s):  
Mohammad Miraskari ◽  
Farzad Hemmati ◽  
Mohamed S. Gadala

To determine the bifurcation types in a rotor-bearing system, it is required to find higher order derivatives of the bearing forces with respect to journal velocity and position. As closed-form expressions for journal bearing force are not generally available, Hopf bifurcation studies of rotor-bearing systems have been limited to simple geometries and cavitation models. To solve this problem, an alternative nonlinear coefficient-based method for representing the bearing force is presented in this study. A flexible rotor-bearing system is presented for which bearing force is modeled with linear and nonlinear dynamic coefficients. The proposed nonlinear coefficient-based model was found to be successful in predicting the bifurcation types of the system as well as predicting the system dynamics and trajectories at spin speeds below and above the threshold speed of instability.


Author(s):  
Pranabesh De Choudhury

Abstract The rotordynamic analysis of a high speed multistage centrifugal compressor supported on radial magnetic bearings, which has been running successfully in the field for 9000 hours to date, is presented. Iterations required to achieve an acceptable rotor configuration using magnetic bearings are discussed. The results of the rotor-bearing system on standard fluid film five shoe tilting pad journal bearings are compared to the dynamics of the rotor on magnetic bearings. Correlation of the observed peak responses with those predicted on magnetic bearings is presented. The actual orbit plots and frequency plots during the coastdown of the rotor-bearing system on auxiliary ball bearings are discussed.


Author(s):  
Yuegang Luo ◽  
Songhe Zhang ◽  
Feng Wen ◽  
Bangchun Wen

A dynamic model was set up for the two-span rotor-bearing system with coupling faults of crack and pedestal looseness supported on three plain journal bearings. The nonlinear dynamic behaviors that induced by crack, pedestal looseness and coupling faults are numerically studied. There is quasi-periodic motion appearing in the cracked rotor-bearing system, and it within the sub-critical speed range in the pedestal looseness rotor-bearing system. There is chaotic motion appearing within the supper-critical speed range in the pedestal looseness rotor-bearing system. The pedestal looseness fault is the main influence on the coupling faults system, and there is Period-3 motion appearing in the system. The results may bring up theoretical references for fault diagnoses, dynamic design, and security running to rotor-bearing system.


2011 ◽  
Vol 236-238 ◽  
pp. 2626-2629
Author(s):  
Wei Dong Gu ◽  
Yong Liang Wang ◽  
Bo Fang ◽  
Zhan Sheng Liu ◽  
Wen Hu Huang

The paper established the model of the practical Model test rig rotor-bearing system using finite element method, and discusses the phenomena of oil whirl and oil whip occurred in fluid lubricated bearing. The characteristics of stability of the nonlinear rotor-bearing system were numerically studied under different unbalance and different parameter of bearings, the model simulations are compared with measurements at the test rig, which can provide the theoretical reference for forecasting malfunction of oil film instability.


Author(s):  
T. A. El-Sayed ◽  
Hussein Sayed

AbstractHydrodynamic journal bearings are used in many applications which involve high speeds and loads. However, they are susceptible to oil whirl instability, which may cause bearing failure. In this work, a flexible Jeffcott rotor supported by two identical journal bearings is used to investigate the stability and bifurcations of rotor bearing system. Since a closed form for the finite bearing forces is not exist, nonlinear bearing stiffness and damping coefficients are used to represent the bearing forces. The bearing forces are approximated to the third order using Taylor expansion, and infinitesimal perturbation method is used to evaluate the nonlinear bearing coefficients. The mesh sensitivity on the bearing coefficients is investigated. Then, the equations of motion based on bearing coefficients are used to investigate the dynamics and stability of the rotor-bearing system. The effect of rotor stiffness ratio and applied load on the Hopf bifurcation stability and limit cycle continuation of the system are investigated. The results of this work show that evaluating the bearing forces using Taylor’s expansion up to the third-order bearing coefficients can be used to profoundly investigate the rich dynamics of rotor-bearing systems.


Author(s):  
Behzad Zamanian Yazdi ◽  
Dung L. Tran ◽  
Chinmay Deshpande

Abstract Hydraulic turbochargers are used in sea water reverse osmosis or acid gas removal cycles to recover wasted pressure energy, decrease operating cost, and increase the overall process efficiency. This paper presents rotordynamic analysis of a large hydraulic turbocharger developed for the acid gas removal process (1500 KW output power, shaft diameter of 101 mm, and operating speed of 8,000 rpm). The hydraulic turbocharger has significant advantages when compared to a reverse running pump such as high speed, compact hydraulics, seal-less design and process lubricated bearings. Utilizing a hydraulic turbocharger in acid gas removal cycles results in a much smaller footprint and no external lubrication oil skid and support system for mechanical seals. The turbocharger rotor consists of a hydraulic turbine runner directly coupled to a pump impeller in a back-to-back arrangement. The shaft is supported in the middle by a set of rigid-walled process-lubricated journal bearings resulting in an overhung configuration (bearing span = 180 mm, rotor mass = 50 kg). For a large high-speed rotor-bearing system, the bearing load-carrying capacity and rotordynamic stability are crucial to ensure a stable performance and to avoid catastrophic failure. In the presented study, rotordynamic performance of a rotor-bearing system is evaluated analytically and experimentally. An analytical model is developed to simulate the rotordynamic performance of a shaft supported by a set of journal bearings. The analytical model simulates the rotor’s orbit in the time domain by solving the rotor’s equation of motion, and solving the transient Reynold equation for each bearing simultaneously. In addition, the model considers the effect of turbulence. An in-house test loop is developed and used to evaluate the turbocharger’s hydraulic and mechanical performance. The test loop runs on a LabView-based control system. The rotor vibration is measured by a set of eddy-current probes, oriented perpendicular to each other. The simulation results from the analytical model are compared against measured experimental data. Comparison of the simulated waterfall and bode plots with experimental data shows that the simulation results agree with the measured data for the frequency and amplitude of vibration. Moreover, the effect of turbulence on the rotordynamic performance of the hydraulic turbocharger is investigated, and it is shown that the turbulence significantly changes the rotordynamic behavior of the system.


1994 ◽  
Vol 116 (4) ◽  
pp. 690-697 ◽  
Author(s):  
J. Kicin´ski ◽  
R. Haller

Various models of external fixation of the bushing, including models which take deformation of the fixation itself into account, have been presented in this work. Analysis of static and dynamic properties of the bearing and of the simple rotor-bearing system as dependent on the bush fixation variant has been performed. Investigations on the influence of preliminary assembly of the bush on the system properties have been performed as well. Calculations were based upon a complex thermoelastohydrodynamic model and a special computer program worked out for this purpose. Obtained results point to wide possibilities of improvement of the system properties by optimization of fixation and clamping the bush in the bearing supports.


Sign in / Sign up

Export Citation Format

Share Document