A review of physical vapor deposition coatings for rolling bearings

Author(s):  
Yansheng Ma ◽  
Jiangfeng Hu ◽  
Xuecheng Dong

Rolling bearings are critical in automotive engines, wind turbine drive trains, and numerous other mechanical systems. Rolling bearings can suffer from early failures, which result in high operation and maintenance costs. Surface engineering techniques, such as the application of coatings and additives for lubricants have been developed to improve the tribological performance of rolling bearings. In this article, the performance of physical vapor deposition coatings on components working under rolling/sliding contacts and rolling bearings is reviewed. The applications of physical vapor deposition coatings in the rolling bearing industry are summarized. The effects of coating thickness, coating mechanical properties, test conditions, coating bonding layer, and coating architecture on coating performance are discussed. At the end of the article, possible approaches to further improve the performance of physical vapor deposition coatings on rolling bearings are proposed.

Materials ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5192
Author(s):  
Jacek Grabarczyk ◽  
Damian Batory ◽  
Witold Kaczorowski ◽  
Bartosz Pązik ◽  
Bartłomiej Januszewicz ◽  
...  

Titanium and its alloys are characterized by high mechanical strength, good corrosion resistance, high biocompatibility and relatively low Young’s modulus. For many years, one of the most commonly used and described titanium alloys has been Ti-6Al-4V. The great interest in this two-phase titanium alloy is due to the broad possibilities of shaping its mechanical and physico-chemical properties using modern surface engineering techniques. The high coefficient of friction and tendency to galling are the most important drawbacks limiting the application of this material in many areas. In this regard, such methods as carburizing, nitriding, oxidation, and the synthesis of thin films using physical vapor deposition (PVD) and chemical vapor deposition (CVD) methods may significantly improve the tribological properties of titanium alloys. The influence of thermo-chemical treatment (oxidation, carburizing and nitriding) on tribological properties and corrosion resistance of Ti-6Al-4V alloy is presented in this paper. The results include metallographic studies, analysis of tribological and mechanical properties and corrosion resistance as well. They indicate significant improvements in mechanical properties manifested by a twofold increase in hardness and improved corrosion resistance for the oxidation process. The carburizing was most important for reducing the coefficient of friction and wear rate. The nitriding process had the least effect on the properties of Ti-6Al-4V alloy.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Huaitao Shi ◽  
Yajun Shang ◽  
Xiaochen Zhang ◽  
Yinghan Tang

In actual working conditions, the initial faults of rolling bearings are difficult to effectively predict due to the lack of evolution knowledge, weak fault information, and strong noise interference. In this paper, a rolling bearing initial fault prediction model that is based on transfer learning and the DCAE-TCN is presented. Firstly, a deep autoencoder (DAE as the first two hidden layers and CAE as the last hidden layer) is used to extract fault features from the rolling bearing vibration signal data. Then, the balanced distributed adaptation (BDA) is used to minimise the distribution difference and class spacing between extracted fault features, and a common feature set is constructed. The temporal features of the original vibration signal in the target domain are extracted using the advantages of the TCN. The experiments are conducted on the publicly available XJTU-SY dataset. The experimental results show that the proposed method can effectively learn the transferable features and compensate the differences between the source and target domains and has a promising application with higher accuracy and robustness for the prediction of early failures of rolling bearings.


Author(s):  
V. C. Kannan ◽  
S. M. Merchant ◽  
R. B. Irwin ◽  
A. K. Nanda ◽  
M. Sundahl ◽  
...  

Metal silicides such as WSi2, MoSi2, TiSi2, TaSi2 and CoSi2 have received wide attention in recent years for semiconductor applications in integrated circuits. In this study, we describe the microstructures of WSix films deposited on SiO2 (oxide) and polysilicon (poly) surfaces on Si wafers afterdeposition and rapid thermal anneal (RTA) at several temperatures. The stoichiometry of WSix films was confirmed by Rutherford Backscattering Spectroscopy (RBS). A correlation between the observed microstructure and measured sheet resistance of the films was also obtained.WSix films were deposited by physical vapor deposition (PVD) using magnetron sputteringin a Varian 3180. A high purity tungsten silicide target with a Si:W ratio of 2.85 was used. Films deposited on oxide or poly substrates gave rise to a Si:W ratio of 2.65 as observed by RBS. To simulatethe thermal treatments of subsequent processing procedures, wafers with tungsten silicide films were subjected to RTA (AG Associates Heatpulse 4108) in a N2 ambient for 60 seconds at temperatures ranging from 700° to 1000°C.


2020 ◽  
pp. 43-50
Author(s):  
A.S. Komshin ◽  
K.G. Potapov ◽  
V.I. Pronyakin ◽  
A.B. Syritskii

The paper presents an alternative approach to metrological support and assessment of the technical condition of rolling bearings in operation. The analysis of existing approaches, including methods of vibration diagnostics, envelope analysis, wavelet analysis, etc. Considers the possibility of applying a phase-chronometric method for support on the basis of neurodiagnostics bearing life cycle on the basis of the unified format of measurement information. The possibility of diagnosing a rolling bearing when analyzing measurement information from the shaft and separator was evaluated.


Sign in / Sign up

Export Citation Format

Share Document