Performance of textured foil journal bearing considering the influence of relative texture depth

Author(s):  
Guanghui Zhang ◽  
Kefan Xu ◽  
Jiazhen Han ◽  
Yanzhong Huang ◽  
Wenjie Gong ◽  
...  

Both foil structure and surface texturing have been widely used to improve bearing performance. However, there is little research on their combination, namely, textured gas foil bearing. This paper adopts the Reynolds equation as the pressure governing equation of bump-type foil journal bearing to study the influence of textures located on the top foil. The Newton-Raphson iterative method and the perturbation method are employed to obtain static and dynamic characteristics, respectively. Thereafter, based on three texture distribution types, further analysis about the effect of the relative texture depth and the textured portion is carried out. The results indicate that an appropriate arrangement of textures could improve the performance of gas foil bearing. For #1 texture distribution, the maximum increment of load capacity could exceed 10% when ω  =  1.4 × 105 r/min, ε  =  0.2.

2017 ◽  
Vol 140 (1) ◽  
Author(s):  
Shuyun Jiang ◽  
Shengye Lin ◽  
Chundong Xu

This paper studies the static and dynamic coefficients of an externally pressurized porous gas journal bearing. The finite difference method is used to solve the Reynolds equation of the bearing to obtain the static load capacity. The linear perturbation method is adopted to derive the perturbation equations considering four degrees-of-freedom (4DOF), namely, the translational movements in x and y directions and the rotational movements around x and y directions. The effects of various parameters on the dynamic behaviors of the journal bearing are studied. These parameters include the bearing number, the supply pressure, the feeding parameter, the length-to-diameter ratio, the porosity parameter, the eccentricity ratio, and tilting angles. Simulated results prove that the proposed method is valid in estimating the static and dynamic characteristics of a porous gas journal bearing with 4DOF.


1964 ◽  
Vol 86 (2) ◽  
pp. 405-413 ◽  
Author(s):  
R. J. Wernick ◽  
C. H. T. Pan

The Reynolds equation applicable to a self-acting partial-arc gas journal bearing is perturbed in terms of the compressibility number Λ. The resulting set of equations is then put into a standard form and Galerkin’s method is used to obtain bearing loads and stability derivatives. These results are expressed in a power series in Λ.


1995 ◽  
Vol 117 (4) ◽  
pp. 717-723 ◽  
Author(s):  
Z. L Qiu ◽  
A. K. Tieu

This paper solves the Reynolds equation by the finite difference method in a fixed coordinate system with the static load acted in the vertical direction. All static and dynamic characteristics (including load capacity, attitude angle, side flow, friction force, misaligned moments, and eight linear force coefficients) of a horizontally grooved bearing under different eccentricity and misalignment conditions are presented and compared with available experimental data. The effects of misalignment on all these bearing characteristics and on the stability of the rotor-bearing system are analyzed.


1967 ◽  
Vol 89 (2) ◽  
pp. 203-210 ◽  
Author(s):  
R. R. Donaldson

Reynolds’ equation for a full finite journal bearing lubricated by an incompressible fluid is solved by separation of variables to yield a general series solution. A resulting Hill equation is solved by Fourier series methods, and accurate eigenvalues and eigenvectors are calculated with a digital computer. The finite Sommerfeld problem is solved as an example, and precise values for the bearing load capacity are presented. Comparisons are made with the methods and numerical results of other authors.


1985 ◽  
Vol 107 (2) ◽  
pp. 284-284
Author(s):  
Japan Society of Mechanical Engineering ◽  
S. S. Lu

1968 ◽  
Vol 90 (1) ◽  
pp. 271-280 ◽  
Author(s):  
B. J. Hamrock

A linearized PH solution to the Reynolds equation was obtained while neglecting side leakage. The analysis was divided into two parts—the step and ridge regions. The pressure profile across the step and ridge region of the various pads which are placed around the journal was obtained from the linearized PH Reynolds equation. Knowing the pressure, the load components and attitude angle were calculated. The resulting equations were found to be a function of the bearing parameters (the eccentricity and compressibility number) and the step parameters (ratio of the stepped clearance to the ridge clearance, ratio of the angle extended by the ridge to the angle extended by the pad, and number of pads placed around the journal). The maximum load capacity can be determined by numerically differentiating the load with respect to the step bearing parameters while finding where the slope is zero. A series of data was run while varying the bearing parameters. The attitude angle was calculated for the various cases which were run.


2017 ◽  
Vol 69 (6) ◽  
pp. 844-862 ◽  
Author(s):  
Chandra B. Khatri ◽  
Satish C. Sharma

Purpose The aim of the present paper is to study the combined influence of textured surface and micropolar lubricant behaviour on the performance of two-lobe hole-entry hybrid journal bearing system. The bearing performance parameters of the textured circular/two-lobe hole-entry hybrid journal bearing system have been computed against the constant vertical external load supported by the bearing. Design/methodology/approach In this work, Eringen’s micropolar fluid theory has been used to derive the governing Reynolds equation. The consequent solution of the governing Reynolds equation has been obtained by using finite element method (FEM) numerical technique. Findings The present study indicates that the use of the textured surface, two-lobe profile of bearing and micropolar lubricant, significantly enhances the bearing performance as compared to non-textured circular journal bearing. Originality/value The present study concerning the influence of surface texturing on the behaviour of the two-lobe hole-entry hybrid journal bearing lubricated with micropolar lubricant is original. The theoretically simulated results of the present study will be useful to design an efficient journal bearing system.


1970 ◽  
Vol 12 (2) ◽  
pp. 116-122 ◽  
Author(s):  
H. F. Black

The application of a perturbation in terms of simple correlations for friction in turbulent Couette and ‘screw’ flows, together with a further empirical assumption consonant with the experimental work of Smith and Fuller (1), leads to a pressure field equation identical in form with the Reynolds equation. The load capacity of journal bearings throughout most of the superlaminar range may be represented by a single curve, and existing laminar solutions may be applied with the parameters modified by Reynolds number. The theory is compared with published experimental results, and with the most successful theoretical treatment (4). The correlations obtained confirm the adequacy of the theory to predict performance in the superlaminar régime.


2005 ◽  
Vol 128 (1) ◽  
pp. 146-154 ◽  
Author(s):  
Kazunori Ikeda ◽  
Toshio Hirano ◽  
Tatsuo Yamashita ◽  
Makoto Mikami ◽  
Hitoshi Sakakida

Direct lubrication tilting pad journal bearings (DLTPJ bearings) have rarely been applied to large-scale rotating machinery, such as turbines or generators, whose journal diameters are more than 500mm. In this paper, static and dynamic characteristics of a 580mm(22.8in.) diameter DLTPJ bearing were studied experimentally using a full-scale bearing test rig. In the static test, distribution of metal temperature, oil film pressure, and bearing loss were measured in changing oil flow rate, with mean bearing pressure ranging up to 2.9MPa. The maximum metal temperature of the DLTPJ bearing was compared to that of a conventional flood lubrication bearing, and it was confirmed that the direct lubrication could increase load capacity. In the dynamic test, spring and damping coefficients of oil film were obtained by exciting the bearing casing that was floated by air bellows. These data will be used for analysis and design of steam turbine rotors and their bearing systems. Also, vibration of pads was investigated because metal failure on upper pads due to vibration has been found in some actual machines. In order to generate oil film pressure on the surface of upper pads, a Rayleigh-step was machined there, and it was confirmed that vibration was reduced by the Rayleigh-step.


Sign in / Sign up

Export Citation Format

Share Document