Empirical Treatment of Hydrodynamic Journal Bearing Performance in the Superlaminar Regime

1970 ◽  
Vol 12 (2) ◽  
pp. 116-122 ◽  
Author(s):  
H. F. Black

The application of a perturbation in terms of simple correlations for friction in turbulent Couette and ‘screw’ flows, together with a further empirical assumption consonant with the experimental work of Smith and Fuller (1), leads to a pressure field equation identical in form with the Reynolds equation. The load capacity of journal bearings throughout most of the superlaminar range may be represented by a single curve, and existing laminar solutions may be applied with the parameters modified by Reynolds number. The theory is compared with published experimental results, and with the most successful theoretical treatment (4). The correlations obtained confirm the adequacy of the theory to predict performance in the superlaminar régime.

1957 ◽  
Vol 24 (4) ◽  
pp. 494-496
Author(s):  
J. F. Osterle ◽  
Y. T. Chou ◽  
E. A. Saibel

Abstract The Reynolds equation of hydrodynamic theory, modified to take lubricant inertia into approximate account, is applied to the steady-state operation of journal bearings to determine the effect of lubricant inertia on the pressure developed in the lubricant. A simple relationship results, relating this “inertial” pressure to the Reynolds number of the flow. It is found that the inertia effect can be significant in the laminar regime.


2010 ◽  
Vol 297-301 ◽  
pp. 618-623 ◽  
Author(s):  
S. Boubendir ◽  
Salah Larbi ◽  
Rachid Bennacer

In this work the influence of thermal effects on the performance of a finite porous journal bearing has been investigated using a thermo-hydrodynamic analysis. The Reynolds equation of thin viscous films is modified taking into account the oil leakage into the porous matrix, by applying Darcy’s law to determine the fluid flow in the porous media. The governing equations were solved numerically using the finite difference approach. Obtained result show a reduction in the performance of journal bearings when the thermal effects are accounted for and, this reduction is greater when the load capacity is significant.


Author(s):  
K.M Faez ◽  
S Hamdavi ◽  
T.V.V.L.N. Rao ◽  
H.H Ya ◽  
Norani M. Mohamed

In recent research, theoretical studies and investigations for the textured surface of a hydrodynamic journal bearing has been widely used. This is due to the journal bearing’s performance in terms of load capacity which affects the system performance, efficiency and reliability. It has been proven that a textured surface and grooved surface have managed to improve the performance of journal bearings to some extent. In this work, the performance of a grooved hydrodynamic journal bearing has been analysed with a multi-depth textured surface. The study has been conducted using the modified Reynolds equation to numerically solve the load capacity and pressure distribution, respectively. From the results obtained, it was found that the surface complexity features on the journal bearing lowered the load capacity performance when compared to the plain bearing. The pressure, meanwhile, was distributed throughout the textured sections on the bearing surface, even though it was lower as compared to the plain bearing.


2015 ◽  
Vol 789-790 ◽  
pp. 342-352
Author(s):  
Khadim Diop ◽  
Abdérafi Charki ◽  
Stéphane Champmartin ◽  
Abdelhak Ambari

Journal fluid bearings are widely used in industry due to their static and dynamic behavior and their very low coefficient of friction. The technical requirements to improve the new technologies design are increasingly focused on the indicators of dependability of systems and machines. Then, it is necessary to develop a methodology to study the reliability of bearings in order to improve and to evaluate their design quality. Few works are referenced in literature concerning the estimation of the reliability of fluid journal bearings. This paper deals with a methodology to study the failure probability of a hydrodynamic journal bearing. An analytical approach is proposed to calculate static characteristics in using the Reynolds equation. The commonly methods used in structural reliability such as FORM (First Order Reliability Method), SORM (Second Order Reliability Method) and Monte Carlo are developed to estimate the failure probability. The function of performance bounding two domains (domain of safety and domain of failure) is estimated for several geometrical configurations of a hydrodynamic journal bearing (long journal bearings with the hypotheses of Sommerfeld, Gümbel and Reynolds, and a short journal bearing with the hypothesis of Gümbel).


1964 ◽  
Vol 86 (2) ◽  
pp. 348-353 ◽  
Author(s):  
B. K. Gupta ◽  
R. M. Phelan

The development of the Reynolds equation for the general case of dynamically loaded journal bearings is extended to include the concept of an effective speed that combines in one term the angular velocities of the journal, bearing, and load. Numerical solutions for the short-bearing approximation are presented for the case of an oscillating effective speed and a load that is constant or varying sinusoidally. Results are compared with available experimental data. The major conclusion is that for those cases involving an oscillating effective speed and a reversing load, the only significant contribution to load capacity comes from the squeeze film and the wedge film can safely be ignored when designing such bearings.


1994 ◽  
Vol 116 (3) ◽  
pp. 654-657 ◽  
Author(s):  
N. M. Bessonov

The theory of micropolar liquid lubrication (see Prakash and Sinha, 1975; Tipei, 1979; Singh and Sinha, 1982) takes into account only the increasing of effective viscosity in thin layers. Modern experiments (see Derjaguin et al., 1985) show that effective viscosity can increase or decrease and approaches to a certain limit (boundary viscosity), depending on the type of liquid and nature of the solid surface. A new generalized Reynolds equation that takes into account both these effects and also all possible situations in microrotation near the friction surface is derived in this work. An example using the equation for calculation of the journal bearing performance is given. It is shown that the friction coefficient can be sufficiently decreased without a noticeable change in the load capacity by regulation of interaction between micropolar lubricant and surfaces.


Author(s):  
Saeid Dousti ◽  
Jianming Cao ◽  
Amir Younan ◽  
Paul Allaire ◽  
Tim Dimond

Fluid film bearings are commonly analyzed with the conventional Reynolds equation, without any temporal inertia effects, developed for oil or other high viscosity lubricants. In applications with rapidly time varying external loads, e.g. ships on wavy oceans, temporal inertia effect should be taken into account. As rotating speeds increase in industrial machines and the reduced Reynolds number increases above the turbulent threshold, a form of linearized turbulence model is often used to increase the effective viscosity to take the turbulence into account. Other than the turbulence effect, with high reduced Reynolds number, convective inertia effect gains importance. Water or other low viscosity fluid film bearings used in subsea machines and compressors are potential applications with a highly reduced Reynolds number.” This paper extends the theory originally developed by Tichy [1] for impulsive loads to high reduced Reynolds number lubrication in different bearing configurations. Both fluid shear and pressure gradient terms are included in the velocity profiles across the lubricant film. The incompressible continuity equation and Navier Stokes equations, including the temporal inertia term, are simplified using an averaged velocity approach to obtain an extended form of Reynolds equation which applies to both laminar and turbulent flow. All terms in the Navier Stokes equation, including both the convective and temporal inertia terms are included in the analysis. The inclusion of the temporal inertia term creates a fluid acceleration term in the extended Reynolds equation. A primary advantage of this formulation is that fluid film bearings lubricated with low viscosity lubricants which are subject to high force slew rates can be analyzed with this extended Reynolds equation. A short bearing form of the extended Reynolds equation is developed with appropriate boundary conditions. A full kinematic analysis of the short journal bearing is developed including time derivatives up to and including shaft accelerations. Linearized stiffness, damping and mass coefficients are developed for a plain short journal bearing. A time transient solution is developed for the pressure and bearing loads in plain journal bearings supporting a symmetric rigid rotor when the rotor is subjected to rapidly applied large forces. The change in the rotor displacements when subjected to unbalance forces is explored. Several comparisons between conventional Reynolds equation solutions and the extended Reynolds number form with temporal inertia effects will be presented and discussed.


2019 ◽  
Vol 8 (1) ◽  
pp. 397-406 ◽  
Author(s):  
Vishwanath B. Awati ◽  
Ashwini Kengangutti

Abstract The paper presents, surface roughness effect for thermo-hydrodynamic analysis of journal bearings extended to couple stress lubricants with high polymer additives. A modified energy equation is simultaneously solved with heat transfer equation as well as modified Reynolds equation by using Multigrid method. The effects of couple stress and surface roughness on the performances of a finite journal bearing are presented in detail. Further, it is shown that lubricants with couple stress and surface roughness, not only increases the load capacity and decreases the friction coefficient, but also generates a lower bearing temperature field. Thus, the lubricant with couple stress improves the performance of journal bearings. The characteristics of bearing are compared with numerical results.


1967 ◽  
Vol 89 (2) ◽  
pp. 203-210 ◽  
Author(s):  
R. R. Donaldson

Reynolds’ equation for a full finite journal bearing lubricated by an incompressible fluid is solved by separation of variables to yield a general series solution. A resulting Hill equation is solved by Fourier series methods, and accurate eigenvalues and eigenvectors are calculated with a digital computer. The finite Sommerfeld problem is solved as an example, and precise values for the bearing load capacity are presented. Comparisons are made with the methods and numerical results of other authors.


1990 ◽  
Vol 112 (2) ◽  
pp. 224-229 ◽  
Author(s):  
G. Gupta ◽  
C. R. Hammond ◽  
A. Z. Szeri

The aim of this paper is to make available to the industrial designer results of the thermohydrodynamic theory of journal bearings, by providing a simplified, yet accurate model of journal bearing lubrication that can be implemented on a personal computer and be used in an interactive mode. The simplified THD theory we propose consists of two coupled ordinary differential equations for pressure and energy and an algebraic equation for viscosity, which are to be solved iteratively. Bearing load capacity, maximum bearing temperature, maximum pressure, coefficient of friction and lubricant flow rate calculated from this simplified theory compare well with results from a more sophisticated model. We also make comparisons with experimental data on full journal bearings, demonstrating substantial agreement between experiment and simplified theory.


Sign in / Sign up

Export Citation Format

Share Document