scholarly journals CNS demyelination associated with immune dysregulation and a novel CTLA-4 variant

2021 ◽  
pp. 135245852096389
Author(s):  
Stefania Kaninia ◽  
Alexandros Grammatikos ◽  
Kathryn Urankar ◽  
Shelley A Renowden ◽  
Nikunj K Patel ◽  
...  

Background: The cytotoxic T-lymphocyte antigen-4 (CTLA-4) pathway acts as a negative immune regulator of T-cell activation and promotes self-tolerance. Case: We report the first case of biopsy-proven central nervous system inflammatory demyelination in the context of primary immunodeficiency and a novel CTLA-4 variant. Conclusion: This case has significant implications for the development of novel treatments for autoimmune conditions including multiple sclerosis and further emphasises the need for caution with clinical use of CTLA-4 immune checkpoint inhibitors in those with a history of inflammatory demyelination.

2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Seongseok Yun ◽  
Nicole D. Vincelette ◽  
Iyad Mansour ◽  
Dana Hariri ◽  
Sara Motamed

Metastatic cutaneous melanoma has poor prognosis with 2-year survival rate of 10–20%. Melanoma cells express various antigens including gp100, melanoma antigen recognized by T cells 1 (MART-1), and tyrosinase, which can induce immune-mediated anticancer response via T cell activation. Cytotoxic T-lymphocyte associated antigen-4 (CTLA-4) is an immune check point molecule that negatively regulates T cell activation and proliferation. Accordingly, recent phase III clinical trials demonstrated significant survival benefit with ipilimumab, a human monoclonal antibody (IgG1) that blocks the interaction of CTLA-4 with its ligands. Since the efficacy of ipilimumab depends on T cell activation, it is associated with substantial risk of immune mediated adverse reactions such as colitis, hepatitis, thyroiditis, and hypophysitis. We report the first case of late onset pericarditis and cardiac tamponade associated with ipilimumab treatment in patient with metastatic cutaneous melanoma.


Author(s):  
Nádia Ghinelli Amôr ◽  
Paulo Sérgio da Silva Santos ◽  
Ana Paula Campanelli

Squamous cell carcinoma (SCC) is the second most common skin cancer worldwide and, despite the relatively easy visualization of the tumor in the clinic, a sizeable number of SCC patients are diagnosed at advanced stages with local invasion and distant metastatic lesions. In the last decade, immunotherapy has emerged as the fourth pillar in cancer therapy via the targeting of immune checkpoint molecules such as programmed cell-death protein-1 (PD-1), programmed cell death ligand-1 (PD-L1), and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4). FDA-approved monoclonal antibodies directed against these immune targets have provide survival benefit in a growing list of cancer types. Currently, there are two immunotherapy drugs available for cutaneous SCC: cemiplimab and pembrolizumab; both monoclonal antibodies (mAb) that block PD-1 thereby promoting T-cell activation and/or function. However, the success rate of these checkpoint inhibitors currently remains around 50%, which means that half of the patients with advanced SCC experience no benefit from this treatment. This review will highlight the mechanisms by which the immune checkpoint molecules regulate the tumor microenvironment (TME), as well as the ongoing clinical trials that are employing single or combinatory therapeutic approaches for SCC immunotherapy. We also discuss the regulation of additional pathways that might promote superior therapeutic efficacy, and consequently provide increased survival for those patients that do not benefit from the current checkpoint inhibitor therapies.


2021 ◽  
pp. 270-274
Author(s):  
Ellen Gebauer ◽  
Wibke Bechtel-Walz ◽  
Christoph Schell ◽  
Michelle Erbel ◽  
Gerd Walz ◽  
...  

Immunotherapy using immune checkpoint inhibitors revolutionized therapies for a variety of malignancies. Nivolumab, an antibody blocking programmed cell death 1 protein, and ipilimumab that blocks cytotoxic T-lymphocyte-associated protein 4 effectively target tumor cells by disinhibiting the endogenous immune response. At the same time, unrestrained T-cell activation may trigger a range of immune-mediated side effects including kidney injury. Steroid therapy constitutes the mainstay of treatment of these adverse events, but dosage, route of administration, and approach to nivolumab re-exposure remain unclear. Here, we report the case of a 72-year-old male patient who developed severe nivolumab/ipilimumab-associated acute kidney injury while on oral steroid therapy for immune-mediated colitis. Acute interstitial nephritis was confirmed by renal biopsy. Administration of high-dose intravenous steroid doses was required to revert declining renal function.


2018 ◽  
Vol 11 (2) ◽  
pp. 549-556 ◽  
Author(s):  
Yoshito Nishimura ◽  
Miho Yasuda ◽  
Kazuki Ocho ◽  
Masaya Iwamuro ◽  
Osamu Yamasaki ◽  
...  

Immune checkpoint inhibitors such as ipilimumab, a cytotoxic T-lymphocyte-associated antigen-4 inhibitor, have been widely used for advanced malignancies. As these inhibitors improve antitumor immunity via T-cell modulation, immune-mediated adverse events associated with T-cell activation, such as colitis, might occur. Herein, we describe a 75-year-old Japanese woman with metastatic malignant melanoma who developed hemorrhagic gastritis after ipilimumab treatment. There was no macroscopic or clinical improvement of gastritis after proton pump inhibitor treatment. However, her condition improved after approximately 3 weeks of corticosteroid therapy and Helicobacter pylori eradication. This case suggests a potential association between severe gastritis and immune checkpoint inhibitor treatment. Although several reports have mentioned ipilimumab-associated colitis, gastritis is considered to be rare. In the present case, H. pylori-associated gastritis might have been exacerbated by the T-cell modulation effect of ipilimumab. To date, no report has clarified the mechanism by which ipilimumab modifies H. pylori infection. The present treatment course provides a helpful perspective for similar cases.


2021 ◽  
Vol 16 ◽  
Author(s):  
Wissam Zam ◽  
Lina Ali

Background: Immunotherapy drugs, known as immune checkpoint inhibitors (ICIs), work by blocking checkpoint proteins from binding with their partner proteins. The two main pathways that are specifically targeted in clinical practice are cytotoxic T-lymphocyte antigen-4 (CTLA-4) and programmed cell death protein 1 (PD-1) that showed potent immune-modulatory effects through their function as negative regulators of T cell activation. Methods: In view of the rapid and extensive development of this research field, we conducted a comprehensive review of the literature and update on the use of CTLA-4, PD-1 and PD-L1 targeted therapy in the treatment of several types of cancer including melanoma, non-small-cell lung carcinoma, breast cancer, hepatocellular carcinoma, hodgkin lymphoma, cervical cancer, head and neck squamous cell carcinoma. Results: Based on the last updated list released on March 2019, seven ICIs are approved by the FDA including ipilimumab, pembrolizumab, nivolumab, atezolizumab, avelumab, durvalumab, and cemiplimab. Conclusion: This review also highlighted the most common adverse effects caused by ICIs and which affect people in different ways.


2020 ◽  
pp. 10.1212/CPJ.0000000000001008
Author(s):  
Felipe A. Ayala ◽  
Sean C. Dougherty ◽  
William Swift ◽  
David A. Lapides

Immunotherapy represents a rapidly expanding area of cancer treatment. Immune checkpoint inhibitors (ICIs), monoclonal antibodies including those targeting cytotoxic T-lymphocyte associated protein 4 or the programmed cell death receptor-1 (PD-1) axis, function by removing inhibitory signals on T-cell activation 1. While promoting T-cell mediated tumor lysis, ICI’s alter the immune system’s regulatory checkpoints which can lead to a host of immune-related adverse events (irAEs) 2, 3. Here, we describe a patient treated with nivolumab (Opdivo, Bristol-Myers Squibb, Princeton, New Jersey) for non-small-cell lung carcinoma (NSCLC) over two years who developed overlapping n-methyl-D-aspartate receptor (NMDA-R) and glial fibrillary acidic protein (GFAP) antibody associated autoimmune encephalitis (AE)4. His hospital course was further complicated by dysautonomia responsive to high-dose steroids.


2020 ◽  
Vol 8 (2) ◽  
pp. e001014
Author(s):  
Takumi Maruhashi ◽  
Daisuke Sugiura ◽  
Il-mi Okazaki ◽  
Taku Okazaki

To prevent the destruction of tissues owing to excessive and/or inappropriate immune responses, immune cells are under strict check by various regulatory mechanisms at multiple points. Inhibitory coreceptors, including programmed cell death 1 (PD-1) and cytotoxic T lymphocyte antigen 4 (CTLA-4), serve as critical checkpoints in restricting immune responses against self-tissues and tumor cells. Immune checkpoint inhibitors that block PD-1 and CTLA-4 pathways significantly improved the outcomes of patients with diverse cancer types and have revolutionized cancer treatment. However, response rates to such therapies are rather limited, and immune-related adverse events are also observed in a substantial patient population, leading to the urgent need for novel therapeutics with higher efficacy and lower toxicity. In addition to PD-1 and CTLA-4, a variety of stimulatory and inhibitory coreceptors are involved in the regulation of T cell activation. Such coreceptors are listed as potential drug targets, and the competition to develop novel immunotherapies targeting these coreceptors has been very fierce. Among such coreceptors, lymphocyte activation gene-3 (LAG-3) is expected as the foremost target next to PD-1 in the development of cancer therapy, and multiple clinical trials testing the efficacy of LAG-3-targeted therapy are underway. LAG-3 is a type I transmembrane protein with structural similarities to CD4. Accumulating evidence indicates that LAG-3 is an inhibitory coreceptor and plays pivotal roles in autoimmunity, tumor immunity, and anti-infection immunity. In this review, we summarize the current understanding of LAG-3, ranging from its discovery to clinical application.


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Narciss Mobini ◽  
Rummit Dhillon ◽  
Jason Dickey ◽  
Jordan Spoon ◽  
Kaviyon Sadrolashrafi

Recent emergence of immune checkpoint inhibitors (ICIs) has revolutionized the treatment of cancers and produced prolonged response by boosting the immune system against tumor cells. The primary target antigens are cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4), a downregulator of T-cell activation, and programmed cell death-1 receptor (PD-1), a regulator of T-cell proliferation. This enhanced immune response can induce autoimmune adverse effects in many organs. Although skin toxicities are the most common, sarcoidal inflammation with exclusive cutaneous involvement is a rare occurrence with only 6 cases reported to date. We report 2 cases with unusual features. One patient is a female who was treated for metastatic renal cell carcinoma with combination of ipilimumab (anti-CTLA-4) and nivolumab (anti-PD-1). She developed deep nodules showing sarcoidal dermatitis and panniculitis on histopathologic exam. The second patient is a male with melanoma of eyelid conjunctiva who was treated prophylactically with ipilimumab. He presented with papules/plaques confined to black tattoos, where the biopsy revealed sarcoidal dermatitis. By a comprehensive literature review, we intend to raise awareness about this potential skin side effect in the growing number of patients receiving targeted immunotherapies. It is crucial to have a high index of suspicion and perform timely biopsies to implement appropriate management strategies.


2018 ◽  
pp. 153-156
Author(s):  
Aaron E. Miller ◽  
Tracy M. DeAngelis ◽  
Michelle Fabian ◽  
Ilana Katz Sand

In recent years, immune checkpoint inhibitors have been shown to be effective tools in treating multiple types of cancer. In a healthy person, immune checkpoint molecules function to remove self-reactive T cells. However, cancer cells may also use these same pathways to suppress T cells. Checkpoint inhibition brings about non-specific T cell activation, which allows for a tumor-specific immune response. However, an infrequent, but potentially severe, complication of checkpoint inhibitor therapies is the formation of autoimmune conditions. Cases of new or worsened autoimmune conditions have been reported in many organ systems. In the nervous system, central and peripheral processes, as well as disorders of the neuro-muscular junction or muscle, have been identified. Treatment is targeted towards the acute episode. Chronic immunosuppression is usually not initiated because stopping the checkpoint inhibitor therapy will typically abort the autoimmune process. In the future, more of these drugs are likely to be used to treat cancer, and thus more must be known about the mechanisms that induce autoimmunity in this setting and the best strategies to treat them.


Sign in / Sign up

Export Citation Format

Share Document