scholarly journals LAG-3: from molecular functions to clinical applications

2020 ◽  
Vol 8 (2) ◽  
pp. e001014
Author(s):  
Takumi Maruhashi ◽  
Daisuke Sugiura ◽  
Il-mi Okazaki ◽  
Taku Okazaki

To prevent the destruction of tissues owing to excessive and/or inappropriate immune responses, immune cells are under strict check by various regulatory mechanisms at multiple points. Inhibitory coreceptors, including programmed cell death 1 (PD-1) and cytotoxic T lymphocyte antigen 4 (CTLA-4), serve as critical checkpoints in restricting immune responses against self-tissues and tumor cells. Immune checkpoint inhibitors that block PD-1 and CTLA-4 pathways significantly improved the outcomes of patients with diverse cancer types and have revolutionized cancer treatment. However, response rates to such therapies are rather limited, and immune-related adverse events are also observed in a substantial patient population, leading to the urgent need for novel therapeutics with higher efficacy and lower toxicity. In addition to PD-1 and CTLA-4, a variety of stimulatory and inhibitory coreceptors are involved in the regulation of T cell activation. Such coreceptors are listed as potential drug targets, and the competition to develop novel immunotherapies targeting these coreceptors has been very fierce. Among such coreceptors, lymphocyte activation gene-3 (LAG-3) is expected as the foremost target next to PD-1 in the development of cancer therapy, and multiple clinical trials testing the efficacy of LAG-3-targeted therapy are underway. LAG-3 is a type I transmembrane protein with structural similarities to CD4. Accumulating evidence indicates that LAG-3 is an inhibitory coreceptor and plays pivotal roles in autoimmunity, tumor immunity, and anti-infection immunity. In this review, we summarize the current understanding of LAG-3, ranging from its discovery to clinical application.

2021 ◽  
Vol 22 (8) ◽  
pp. 4109
Author(s):  
Mankgopo M. Kgatle ◽  
Tebatso M. G. Boshomane ◽  
Ismaheel O. Lawal ◽  
Kgomotso M. G. Mokoala ◽  
Neo P. Mokgoro ◽  
...  

Emerging research demonstrates that co-inhibitory immune checkpoints (ICs) remain the most promising immunotherapy targets in various malignancies. Nonetheless, ICIs have offered insignificant clinical benefits in the treatment of advanced prostate cancer (PCa) especially when they are used as monotherapies. Current existing PCa treatment initially offers an improved clinical outcome and overall survival (OS), however, after a while the treatment becomes resistant leading to aggressive and uncontrolled disease associated with increased mortality and morbidity. Concurrent combination of the ICIs with radionuclides therapy that has rapidly emerged as safe and effective targeted approach for treating PCa patients may shift the paradigm of PCa treatment. Here, we provide an overview of the contextual contribution of old and new emerging inhibitory ICs in PCa, preclinical and clinical studies supporting the use of these ICs in treating PCa patients. Furthermore, we will also describe the potential of using a combinatory approach of ICIs and radionuclides therapy in treating PCa patients to enhance efficacy, durable cancer control and OS. The inhibitory ICs considered in this review are cytotoxic T-lymphocyte antigen 4 (CTLA4), programmed cell death 1 (PD1), V-domain immunoglobulin suppressor of T cell activation (VISTA), indoleamine 2,3-dioxygenase (IDO), T cell Immunoglobulin Domain and Mucin Domain 3 (TIM-3), lymphocyte-activation gene 3 (LAG-3), T cell immunoreceptor with Ig and ITIM domains (TIGIT), B7 homolog 3 (B7-H3) and B7-H4.


2021 ◽  
pp. 135245852096389
Author(s):  
Stefania Kaninia ◽  
Alexandros Grammatikos ◽  
Kathryn Urankar ◽  
Shelley A Renowden ◽  
Nikunj K Patel ◽  
...  

Background: The cytotoxic T-lymphocyte antigen-4 (CTLA-4) pathway acts as a negative immune regulator of T-cell activation and promotes self-tolerance. Case: We report the first case of biopsy-proven central nervous system inflammatory demyelination in the context of primary immunodeficiency and a novel CTLA-4 variant. Conclusion: This case has significant implications for the development of novel treatments for autoimmune conditions including multiple sclerosis and further emphasises the need for caution with clinical use of CTLA-4 immune checkpoint inhibitors in those with a history of inflammatory demyelination.


2020 ◽  
Vol 153 (5) ◽  
pp. 618-629
Author(s):  
Hao Li ◽  
Lei-Lei Yang ◽  
Cong-Cong Wu ◽  
Yao Xiao ◽  
Liang Mao ◽  
...  

Abstract Objectives Interferon-induced protein with tetratricopeptide repeats 1 (IFIT1) and interferon-induced transmembrane protein 3 (IFITM3) are commonly induced by type I interferon. The study aims to investigate the expression and clinical significance of IFIT1 and IFITM3 in head and neck squamous cell carcinoma (HNSCC). Methods Immunohistochemistry was applied on tissue microarray to reveal IFIT1 and IFITM3 expression in 275 HNSCC, 69 dysplasia, and 42 normal mucosa samples. The clinicopathologic features associated with IFIT1 and IFITM3 expression in HNSCC patients were analyzed. Results IFIT1 and IFITM3 were highly expressed in HNSCC tissues. High expression of IFIT1 and IFITM3 predicts a negative prognosis for patients (P < .01). IFIT1 and IFITM3 expression was associated with programmed cell death ligand 1, B7-H4, V-domain Ig suppressor of T-cell activation, indoleamine 2,3-dioxygenase, and macrophage marker immunoreactivity. Conclusions IFIT1 and IFITM3 were overexpressed in HNSCC and indicated poor prognoses for patients with HNSCC. IFIT1 and IFITM3 expression was correlated with several immune checkpoint molecules and tumor-associated macrophage markers.


2003 ◽  
Vol 197 (7) ◽  
pp. 885-898 ◽  
Author(s):  
Marc Dalod ◽  
Tanya Hamilton ◽  
Rachelle Salomon ◽  
Thais P. Salazar-Mather ◽  
Stanley C. Henry ◽  
...  

Differentiation of dendritic cells (DCs) into particular subsets may act to shape innate and adaptive immune responses, but little is known about how this occurs during infections. Plasmacytoid dendritic cells (PDCs) are major producers of interferon (IFN)-α/β in response to many viruses. Here, the functions of these and other splenic DC subsets are further analyzed after in vivo infection with murine cytomegalovirus (MCMV). Viral challenge induced PDC maturation, their production of high levels of innate cytokines, and their ability to activate natural killer (NK) cells. The conditions also licensed PDCs to efficiently activate CD8 T cells in vitro. Non-plasmacytoid DCs induced T lymphocyte activation in vitro. As MCMV preferentially infected CD8α+ DCs, however, restricted access to antigens may limit plasmacytoid and CD11b+ DC contribution to CD8 T cell activation. IFN-α/β regulated multiple DC responses, limiting viral replication in all DC and IL-12 production especially in the CD11b+ subset but promoting PDC accumulation and CD8α+ DC maturation. Thus, during defense against a viral infection, PDCs appear specialized for initiation of innate, and as a result of their production of IFN-α/β, regulate other DCs for induction of adaptive immunity. Therefore, they may orchestrate the DC subsets to shape endogenous immune responses to viruses.


Author(s):  
Nádia Ghinelli Amôr ◽  
Paulo Sérgio da Silva Santos ◽  
Ana Paula Campanelli

Squamous cell carcinoma (SCC) is the second most common skin cancer worldwide and, despite the relatively easy visualization of the tumor in the clinic, a sizeable number of SCC patients are diagnosed at advanced stages with local invasion and distant metastatic lesions. In the last decade, immunotherapy has emerged as the fourth pillar in cancer therapy via the targeting of immune checkpoint molecules such as programmed cell-death protein-1 (PD-1), programmed cell death ligand-1 (PD-L1), and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4). FDA-approved monoclonal antibodies directed against these immune targets have provide survival benefit in a growing list of cancer types. Currently, there are two immunotherapy drugs available for cutaneous SCC: cemiplimab and pembrolizumab; both monoclonal antibodies (mAb) that block PD-1 thereby promoting T-cell activation and/or function. However, the success rate of these checkpoint inhibitors currently remains around 50%, which means that half of the patients with advanced SCC experience no benefit from this treatment. This review will highlight the mechanisms by which the immune checkpoint molecules regulate the tumor microenvironment (TME), as well as the ongoing clinical trials that are employing single or combinatory therapeutic approaches for SCC immunotherapy. We also discuss the regulation of additional pathways that might promote superior therapeutic efficacy, and consequently provide increased survival for those patients that do not benefit from the current checkpoint inhibitor therapies.


2021 ◽  
pp. 270-274
Author(s):  
Ellen Gebauer ◽  
Wibke Bechtel-Walz ◽  
Christoph Schell ◽  
Michelle Erbel ◽  
Gerd Walz ◽  
...  

Immunotherapy using immune checkpoint inhibitors revolutionized therapies for a variety of malignancies. Nivolumab, an antibody blocking programmed cell death 1 protein, and ipilimumab that blocks cytotoxic T-lymphocyte-associated protein 4 effectively target tumor cells by disinhibiting the endogenous immune response. At the same time, unrestrained T-cell activation may trigger a range of immune-mediated side effects including kidney injury. Steroid therapy constitutes the mainstay of treatment of these adverse events, but dosage, route of administration, and approach to nivolumab re-exposure remain unclear. Here, we report the case of a 72-year-old male patient who developed severe nivolumab/ipilimumab-associated acute kidney injury while on oral steroid therapy for immune-mediated colitis. Acute interstitial nephritis was confirmed by renal biopsy. Administration of high-dose intravenous steroid doses was required to revert declining renal function.


2021 ◽  
Vol 8 ◽  
Author(s):  
Iqra Muneer ◽  
Sajjad Ahmad ◽  
Anam Naz ◽  
Sumra Wajid Abbasi ◽  
Adel Alblihy ◽  
...  

V-domain Ig suppressor of T cell activation (VISTA) is an immune checkpoint and is a type I transmembrane protein. VISTA is linked to immunotherapy resistance, and it is a potential immune therapeutic target, especially for triple-negative breast cancer. It expresses at a high concentration in regulatory T cells and myeloid-derived suppressor cells, and its functional blockade is found to delay tumor growth. A useful medicinal plant database for drug designing (MPD3), which is a collection of phytochemicals from diverse plant families, was employed in virtual screening against VISTA to prioritize natural inhibitors against VISTA. Three compounds, Paratocarpin K (PubChem ID: 14187087), 3-(1H-Indol-3-yl)-2-(trimethylazaniumyl)propanoate (PubChem ID: 3861164), and 2-[(5-Benzyl-4-ethyl-1,2,4-triazol-3-yl)sulfanylmethyl]-5-methyl-1,3,4-oxadiazole (PubChem ID: 6494266), having binding energies stronger than −6 kcal/mol were found to have two common hydrogen bond interactions with VISTA active site residues: Arg54 and Arg127. The dynamics of the compound–VISTA complexes were further explored to infer binding stability of the systems. Results revealed that the compound 14187087 and 6494266 systems are highly stable with an average RMSD of 1.31 Å. Further affirmation on the results was achieved by running MM-GBSA on the MD simulation trajectories, which re-ranked 14187087 as the top-binder with a net binding energy value of −33.33 kcal/mol. In conclusion, the present study successfully predicted natural compounds that have the potential to block the function of VISTA and therefore can be utilized further in experimental studies to validate their real anti-VISTA activity.


Science ◽  
2019 ◽  
Vol 364 (6440) ◽  
pp. 558-566 ◽  
Author(s):  
Daisuke Sugiura ◽  
Takumi Maruhashi ◽  
Il-mi Okazaki ◽  
Kenji Shimizu ◽  
Takeo K. Maeda ◽  
...  

Targeted blockade of PD-1 with immune checkpoint inhibitors can activate T cells to destroy tumors. PD-1 is believed to function mainly at the effector, but not in the activation, phase of T cell responses, yet how PD-1 function is restricted at the activation stage is currently unknown. Here we demonstrate that CD80 interacts with PD-L1 in cis on antigen-presenting cells (APCs) to disrupt PD-L1/PD-1 binding. Subsequently, PD-L1 cannot engage PD-1 to inhibit T cell activation when APCs express substantial amounts of CD80. In knock-in mice in which cis-PD-L1/CD80 interactions do not occur, tumor immunity and autoimmune responses were greatly attenuated by PD-1. These findings indicate that CD80 on APCs limits the PD-1 coinhibitory signal, while promoting CD28-mediated costimulation, and highlight critical components for induction of optimal immune responses.


Blood ◽  
1992 ◽  
Vol 79 (2) ◽  
pp. 489-494 ◽  
Author(s):  
GJ Freeman ◽  
CM Disteche ◽  
JG Gribben ◽  
DA Adler ◽  
AS Freedman ◽  
...  

Abstract B7 is an activation antigen expressed on activated B cells and gamma- interferon-stimulated monocytes. The B7 antigen is the natural ligand for CD28 on T cells. After engagement of T-cell receptor with antigen in association with major histocompatibility complex class II, a second signal mediated through the binding of B7 to CD28 greatly upregulates the production of multiple lymphokines. We have now mapped the B7 gene to human chromosome 3 using the technique of polymerase chain reaction on a panel of hamster x human somatic cell hybrid DNAs. We have further localized the gene to 3q13.3–3q21 using in situ hybridization on human metaphase chromosomes. Trisomy of chromosome 3 is a recurrent chromosome change seen in various lymphomas and lymphoproliferative diseases, particularly diffuse, mixed, small, and large cell lymphomas, human T-cell lymphotropic virus type I-induced adult T-cell leukemia, and angioimmunoblastic lymphadenopathy. A number of chromosomal defects involving 3q21 have been described in acute myeloid leukemia and also in myelodysplastic and myeloproliferative syndromes. The mapping of B7 may permit further insight into disease states associated with aberrant lymphocyte activation and lymphokine synthesis.


2005 ◽  
Vol 171 (1) ◽  
pp. 121-131 ◽  
Author(s):  
Katharina Gaus ◽  
Elena Chklovskaia ◽  
Barbara Fazekas de St. Groth ◽  
Wendy Jessup ◽  
Thomas Harder

After activation, T lymphocytes restructure their cell surface to form membrane domains at T cell receptor (TCR)–signaling foci and immunological synapses (ISs). To address whether these rearrangements involve alteration in the structure of the plasma membrane bilayer, we used the fluorescent probe Laurdan to visualize its lipid order. We observed a condensation of the plasma membrane at TCR activation sites. The formation of ordered domains depends on the presence of the transmembrane protein linker for the activation of T cells and Src kinase activity. Moreover, these ordered domains are stabilized by the actin cytoskeleton. Membrane condensation occurs upon TCR stimulation alone but is prolonged by CD28 costimulation with TCR. In ISs, which are formed by conjugates of TCR transgenic T lymphocytes and cognate antigen-presenting cells, similar condensed membrane phases form first in central regions and later at the periphery of synapses. The formation of condensed membrane domains at T cell activation sites biophysically reflects membrane raft accumulation, which has potential implications for signaling at ISs.


Sign in / Sign up

Export Citation Format

Share Document