Experimental study on seismic performance of low-rise recycled aggregate concrete shear wall with single-layer reinforcement

2016 ◽  
Vol 20 (10) ◽  
pp. 1493-1511 ◽  
Author(s):  
Zhong-yi Zhou ◽  
Wanlin Cao

A total of four full-scale low-rise recycled aggregate concrete shear wall specimens were tested adopting a quasi-static loading method to analyze the seismic performance. The low-rise shear walls consisted of recycled aggregate concrete, single-layer reinforcements, concealed special-shaped columns, and expanded polystyrene thermal insulation modules. Based on the experimental results, the seismic performance and failure characteristic of the specimens were comparatively analyzed. The factors affecting the seismic performance of the low-rise shear wall were also analyzed. The shear bearing capacity calculation model and formula of the walls were proposed based on the softened strut-and-tie model. A comparison of the calculated results and the experimental results shows that they are in good agreement. The results show that the load bearing capacity and deformation capacity can be significantly improved by expanded polystyrene thermal insulation modules, and that the shear wall specimens with higher recycled aggregate concrete strength and larger reinforcement ratio of the shear wall exhibit better seismic performance.

2012 ◽  
Vol 256-259 ◽  
pp. 973-978 ◽  
Author(s):  
Jian Wei Zhang ◽  
Wan Lin Cao ◽  
Hong Ying Dong

To ascertain the dynamic performance of recycled aggregate concrete (RAC) shear walls, four 1/3 scale models, including three mid-rise shear walls with reinforcement ratio 0.25% but different recycled aggregate replacement rate, and one with reinforcement ratio 0.46% and 100% recycled coarse and fine aggregate, were tested on the shaking table. The testing process included elastic, cracking, and failure stage of the models. Dynamic characteristic and dynamic response of models at different stages were studied and the comparison between failure patterns of 4 models was also made. The shaking table test results show that the seismic performance of RAC mid-rise shear wall becomes worse with the increase of the recycled aggregate replacement. And the seismic performance of 100% recycled aggregate concrete shear wall gets a little higher with the increase of the reinforcement ratio.


2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Xianggang Zhang ◽  
Jianhui Yang ◽  
Yaozong Zhang ◽  
Xiang Gao

To study the seismic strength and stiffness for recycled aggregate concrete-filled steel tube (RACFST) frame, two-frame specimens made up of RACFST column and reinforced recycled aggregate concrete (RAC) beam were used for a seismic test under reversed low-cycle loading. The failure mechanism, hysteresis curve, strength attenuation, and stiffness degradation were determined for the specimens. The design methods for the story shear bearing capacity and stiffness for the single-layer single-span RACFST frame were discussed. It is shown that the seismic design requirements including “strong column weak beam” and “strong shear weak bending” can be met. The hysteresis curves are symmetric and the strength attenuation and rigidity degeneration change significantly, then change a little, and then significantly again under the same displacement. It is possible that the methods including elastic bending moment at the column end, plastic hinge at the column end, and plastic hinge at the column bottom can all be applied to the design calculation of the story shear bearing capacity for the single-layer single-span RACFST frame. The method adopted in this paper can be used to estimate the original elastic layer stiffness of the RACFST frame.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1508
Author(s):  
Ali Raza ◽  
Ahmad Rashedi ◽  
Umer Rafique ◽  
Nazia Hossain ◽  
Banjo Akinyemi ◽  
...  

Structural members comprising geopolymer recycled aggregate concrete (RAC) reinforced with glass fiber-reinforced polymer (GFRP) bars have not been investigated appropriately for axial compressive loading cases. The present study addresses this knowledge gap by evaluating the structural efficiency of GFRP-reinforced geopolymer recycled aggregate concrete (GGRAC)-based members subjected to axial compressive loading. A total of nine compressive members (250 mm in cross-section and 1150 mm in height) were constructed to examine the effect of the number of longitudinal GFRP bars and the vertical spacing of transverse GFRP hoops/ties. The experimental results portrayed that the ductility of GGRAC compressive members improved with the reduction in the pitch of GFRP hoops. The axial load-carrying capacity (LCC) of GGRAC compressive members increased by increasing the number of GFRP bars up to eight (corresponding to a reinforcement ratio of 2.11%) while it decreased by using ten longitudinal GFRP bars (corresponding to a reinforcement ratio of 2.65%). Additionally, an empirical model was suggested to predict the axial LCC of GGRAC compressive members based on a large amount of experimental data of similar members. The experimental results and related theoretical predictions substantially prove the applicability and accuracy of the proposed model. The proposed column represents a feasible structural member in terms of material availability and environmental sustainability.


2018 ◽  
Vol 8 (12) ◽  
pp. 2377 ◽  
Author(s):  
Zongping Chen ◽  
Rusheng Yao ◽  
Chenggui Jing ◽  
Fan Ning

The application of recycled aggregate concrete (RAC) has developed rapidly in recent years. But how to evaluate the residual properties of RAC after the fires is more beneficial to the further popularization and application of RAC. This paper presents the residual properties of RAC and steel reinforced recycled aggregate concrete (SRRAC) components after exposure to elevated temperature. A total of 176 specimens (120 rectangular prisms specimens, 24 SRRAC short columns and 32 SRRAC beams) were designed and tested after exposure to elevated temperature. The parameters were considered in the test, including replacement percentage of recycled coarse aggregate (0%, 30%, 50%, 70% and 100%) and exposure to different temperatures (20, 200, 400, 600 and 800 degrees centigrade). According to the test results, heat damage and residual properties of specimens were analyzed in detail, such as surface change, mass loss, bearing capacity degradation, stiffness degradation, ductility and energy dissipation of specimens under the elevated temperature. The results showed that a series of significant physical phenomena occurred on the surface of RAC and SRRAC components after exposure to elevated temperature, such as the color changed from green-grey to gray-white, chapped on the concrete surface after 400 degrees centigrade and the mass loss of concrete is less than 10%. The degradation of mechanical properties degenerated significantly with the increase of temperature, such as the strength of RAC, and compressive capacity, bending capacity, shear capacity and stiffness of SRRAC components, among that, the degradation of the strength of RAC was most obvious, up to 26%. The ductility and energy dissipation of SRRAC components were insignificant affected by the elevated temperature. Mass loss ratio, peak deformation and bearing capacity showed a slight increase trend with the increase of replacement percentage. But the stiffness showed significant fluctuation when replacement percentage was 70% to 100%. And the ductility and energy dissipation showed significant fluctuation when replacement percentage was 30% to 70%.


2019 ◽  
Vol 195 ◽  
pp. 682-694 ◽  
Author(s):  
Chao Liu ◽  
Jincheng Fan ◽  
Guoliang Bai ◽  
Zonggang Quan ◽  
Guangming Fu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document