Fine and coarse particle mass concentrations and emission rates in the workplace of a detergent industry

2013 ◽  
Vol 23 (6) ◽  
pp. 881-889 ◽  
Author(s):  
Thodoros Glytsos ◽  
Jakub Ondráček ◽  
Lucie Džumbová ◽  
Kostas Eleftheriadis ◽  
Mihalis Lazaridis
2013 ◽  
Vol 15 (2) ◽  
pp. 188-194 ◽  

The impacts of wind conditions to fine and coarse particle mass concentrations at four European urban centers, by multivariate regression analysis of particle measurements against categorized wind (direction and speed) conditions were estimated. Statistically significant associations (both positive and negative) were observed for all urban areas. Both fine and coarse particle mass concentrations were decreased for moderate and strong winds (speed > 2.2 m s-1) in Athens and Helsinki. Weak winds had a positive influence on particle mass, accounting for up to 40% of fine particles in Athens. For the three coastal urban areas (Amsterdam, Athens and Helsinki), positive correlations were observed for sectors encompassing ports and areas with intense marine traffic. For Birmingham, the association of both particle fractions with the eastern sector indicated the influence of emissions from central UK and continental Europe. The method described here may be used to screen the orientation of sources near receptor sites.


2007 ◽  
Vol 7 (11) ◽  
pp. 3015-3033 ◽  
Author(s):  
E. T. Karageorgos ◽  
S. Rapsomanikis

Abstract. The PM10 mass concentration levels and inorganic chemical composition were determined on 12-h resolution sampling during August 2003 and March 2004, in the centre of Athens, Greece. The August 2003 campaign mean PM10 mass concentration, obtained by Beta Attenuation at 5 m above ground in Athinas Street, was 56 μg m−3 while the corresponding value for March 2004 was 92 μg m−3. In both campaigns the E.U. imposed daily limit of 50 μg m−3 was exceeded on several days. During the March campaign, in Athinas Street, additionally obtained DSFU-PM10 (PM10-2.5+PM2.5) gravimetric mass concentrations (mean: 121 μg m−3) in the "breathing zone", at 1.5 m above ground were significantly higher compared to the respective mean PM10 mass concentrations obtained by the same method at 25 m above ground, in a second site (AEDA; mean: 86 μg m−3) also in the centre of the city. The above findings suggest that, for a realistic estimation of the exposure of citizens to particulate matter, PM10 sampling in the "breathing zone" (1.5–3 m above ground) is necessary. Such data are presented for the first time for the centre of Athens. In both campaigns, calcium was found to be the predominant component of the coarse fraction while crust-related aluminosilicates and iron were the other major components. The above elements constitute the most important components of the fine fraction, together with the predominant sulphur. All toxic metals were found in concentrations below the established air quality limits, and most of them in lower concentrations compared to older studies. Lead in particular, appeared mostly in the fine fraction and in very low concentrations compared to studies dating more than a decade back. The predominant ions of the coarse fraction have been found to be Ca2+, NO3−, Na+ and Cl−, while SO42−, Ca2+ and NH4+ were the major ionic components of the fine fraction. In the fine particles, a low molar ratio of NH4+/SO42− indicated an ammonium-poor ambient air, and together with inter-ionic correlations suggested that atmospheric ammonia is the major neutralizing agent of sulfate, while being insufficient to neutralize it to full extend. The formation of NH4NO3 is therefore not favored and additional contribution to the neutralization of acidity has been shown to be provided by Ca2+ and Mg2+. In the coarse particle fraction, the predominantly abundant Ca2+ has been found to correlate well with NO3− and SO42−, indicating its role as important neutralizing agent in this particle size range. The proximity of the location under study to the sea explains the important concentrations of salts with marine origin like NaCl and MgCl2 that were found in the coarse fraction, while chloride depletion in the gaseous phase was found to be limited to the fine particulate fraction. Total analyzed inorganic mass (elemental+ionic) was found to be ranging between approximately 25–33% of the total coarse particle mass and 35–42% of the total fine particle mass.


2019 ◽  
Author(s):  
Leigh R. Crilley ◽  
Ajit Singh ◽  
Louisa J. Kramer ◽  
Marvin D. Shaw ◽  
Mohammed S. Alam ◽  
...  

Abstract. There is considerable interest in using low-cost optical particle counters (OPC) to supplement existing routine air quality networks that monitor particle mass concentrations. In order to do this, low-cost OPC data needs to be cross-comparable with particle mass reference instrumentation, and as yet, there is no widely agreed methodology. Aerosol hygroscopicity is known to be a key parameter to consider when correcting particle mass concentrations derived from a low-cost OPC, particularly at high ambient Relative Humidity (RH). Correction factors have been developed that apply κ-Köhler theory to correct for the influence of water uptake by hygroscopic aerosols. We have used datasets of co-located reference particle measurements and a low-cost OPC (OPC-N2, Alphasense), collected in four cities in three continents, to explore the performance of this correction factor. We report evidence that the elevated particle mass concentrations, reported by the low-cost OPC relative to reference instrumentation, is due to bulk aerosol hygroscopicity under different RH conditions, which is determined by aerosol composition and in particular the levels of hygroscopic aerosols (sulphate and nitrate). We exploit measurements made in volcanic plumes in Nicaragua, that are predominantly composed of sulphate aerosol, as a natural experiment to demonstrate this behaviour in the ambient atmosphere, with the observed humidogram closely resembling the calculated pure sulphuric acid humidogram. The results indicate that the particle mass concentrations derived from low-cost OPCs during periods of high RH (> 60 %) need to be corrected for aerosol hygroscopic growth. We employed a correction factor based on κ-Köhler theory and observed corrected OPC-N2 PM2.5 mass concentrations to be within 33 % of reference measurements at all sites. The results indicated that an in situ derived κ (using suitable reference instrumentation) would lead to the most accurate correction relative to co-located reference instruments. Applying literature κ in the correction factor also resulted in improved performance of OPC-N2, to be within 50 % of reference. Therefore, for areas where suitable reference instrumentation for developing a local correction factor is lacking, using a literature κ value can result in a reasonable correction. For locations with low levels of hygroscopic aerosols and RH, a simple calibration against gravimetric measurements (using suitable reference instrumentation) would likely be sufficient. Whilst this study generated correction factors specific for the Alphasense OPC-N2 sensor, the calibration methodology developed is likely amenable to other low cost PM sensors.


2012 ◽  
Vol 12 (4) ◽  
pp. 1681-1700 ◽  
Author(s):  
R. M. Healy ◽  
J. Sciare ◽  
L. Poulain ◽  
K. Kamili ◽  
M. Merkel ◽  
...  

Abstract. An Aerosol Time-Of-Flight Mass Spectrometer (ATOFMS) was deployed to investigate the size-resolved chemical composition of single particles at an urban background site in Paris, France, as part of the MEGAPOLI winter campaign in January/February 2010. ATOFMS particle counts were scaled to match coincident Twin Differential Mobility Particle Sizer (TDMPS) data in order to generate hourly size-resolved mass concentrations for the single particle classes observed. The total scaled ATOFMS particle mass concentration in the size range 150–1067 nm was found to agree very well with the sum of concurrent High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and Multi-Angle Absorption Photometer (MAAP) mass concentration measurements of organic carbon (OC), inorganic ions and black carbon (BC) (R2 = 0.91). Clustering analysis of the ATOFMS single particle mass spectra allowed the separation of elemental carbon (EC) particles into four classes: (i) EC attributed to biomass burning (ECbiomass), (ii) EC attributed to traffic (ECtraffic), (iii) EC internally mixed with OC and ammonium sulfate (ECOCSOx), and (iv) EC internally mixed with OC and ammonium nitrate (ECOCNOx). Average hourly mass concentrations for EC-containing particles detected by the ATOFMS were found to agree reasonably well with semi-continuous quantitative thermal/optical EC and optical BC measurements (r2 = 0.61 and 0.65–0.68 respectively, n = 552). The EC particle mass assigned to fossil fuel and biomass burning sources also agreed reasonably well with BC mass fractions assigned to the same sources using seven-wavelength aethalometer data (r2 = 0.60 and 0.48, respectively, n = 568). Agreement between the ATOFMS and other instrumentation improved noticeably when a period influenced by significantly aged, internally mixed EC particles was removed from the intercomparison. 88% and 12% of EC particle mass was apportioned to fossil fuel and biomass burning respectively using the ATOFMS data compared with 85% and 15% respectively for BC estimated from the aethalometer model. On average, the mass size distribution for EC particles is bimodal; the smaller mode is attributed to locally emitted, mostly externally mixed EC particles, while the larger mode is dominated by aged, internally mixed ECOCNOx particles associated with continental transport events. Periods of continental influence were identified using the Lagrangian Particle Dispersion Model (LPDM) "FLEXPART". A consistent minimum between the two EC mass size modes was observed at approximately 400 nm for the measurement period. EC particles below this size are attributed to local emissions using chemical mixing state information and contribute 79% of the scaled ATOFMS EC particle mass, while particles above this size are attributed to continental transport events and contribute 21% of the EC particle mass. These results clearly demonstrate the potential benefit of monitoring size-resolved mass concentrations for the separation of local and continental EC emissions. Knowledge of the relative input of these emissions is essential for assessing the effectiveness of local abatement strategies.


2019 ◽  
Vol 19 (20) ◽  
pp. 13189-13208
Author(s):  
Xiaoli Shen ◽  
Heike Vogel ◽  
Bernhard Vogel ◽  
Wei Huang ◽  
Claudia Mohr ◽  
...  

Abstract. We conducted a 6-week measurement campaign in summer 2016 at a rural site about 11 km north of the city of Karlsruhe in southwest Germany in order to study the chemical composition and origin of aerosols in the upper Rhine valley. In particular, we deployed a single-particle mass spectrometer (LAAPTOF) and an aerosol mass spectrometer (AMS) to provide complementary chemical information on aerosol particles smaller than 2.5 µm. For the entire measurement period, the total aerosol particle mass was dominated by sodium salts, contributing on average (36±27) % to the total single particles measured by the LAAPTOF. The total particulate organic compounds, sulfate, nitrate, and ammonium contributed on average (58±12) %, (22±7) %, (10±1) %, and (9±3) % to the total non-refractory particle mass measured by the AMS. Positive matrix factorization (PMF) analysis for the AMS data suggests that the total organic aerosol (OA) consisted of five components, including (9±7) % hydrocarbon-like OA (HOA), (16±11) % semi-volatile oxygenated OA (SV-OOA), and (75±15) % low-volatility oxygenated OA (LV-OOA). The regional transport model COSMO-ART was applied for source apportionment and to achieve a better understanding of the impact of complex transport patterns on the field observations. Combining field observations and model simulations, we attributed high particle numbers and SO2 concentrations observed at this rural site to industrial emissions from power plants and a refinery in Karlsruhe. In addition, two characteristic episodes with aerosol particle mass dominated by sodium salts particles comprising (70±24) % of the total single particles and organic compounds accounting for (77±6) % of total non-refractory species, respectively, were investigated in detail. For the first episode, we identified relatively fresh and aged sea salt particles originating from the Atlantic Ocean more than 800 km away. These particles showed markers like m∕z 129 C5H7NO3+, indicating the influence of anthropogenic emissions modifying their composition, e.g. from chloride to nitrate salts during the long-range transport. For a 3 d episode including high organic mass concentrations, model simulations show that on average (74±7) % of the particulate organics at this site were of biogenic origin. Detailed model analysis allowed us to find out that three subsequent peaks of high organic mass concentrations originated from different sources, including local emissions from the city and industrial area of Karlsruhe, regional transport from the city of Stuttgart (∼64 km away), and potential local night-time formation and growth. Biogenic (forest) and anthropogenic (urban) emissions were mixed during transport and contributed to the formation of organic particles. In addition, topography, temperature inversion, and stagnant meteorological conditions also played a role in the build-up of higher organic particle mass concentrations. Furthermore, the model was evaluated using field observations and corresponding sensitivity tests. The model results show good agreement with trends and concentrations observed for several trace gases (e.g. O3, NO2, and SO2) and aerosol particle compounds (e.g. ammonium and nitrate). However, the model underestimates the number of particles by an order of magnitude and underestimates the mass of organic particles by a factor of 2.3. The discrepancy was expected for particle number since the model does not include all nucleation processes. The missing organic mass indicates either an underestimated regional background or missing sources and/or mechanisms in the model, like night-time chemistry. This study demonstrates the potential of combining comprehensive field observations with dedicated transport modelling to understand the chemical composition and complex origin of aerosols.


2018 ◽  
Vol 11 (2) ◽  
pp. 709-720 ◽  
Author(s):  
Leigh R. Crilley ◽  
Marvin Shaw ◽  
Ryan Pound ◽  
Louisa J. Kramer ◽  
Robin Price ◽  
...  

Abstract. A fast-growing area of research is the development of low-cost sensors for measuring air pollutants. The affordability and size of low-cost particle sensors makes them an attractive option for use in experiments requiring a number of instruments such as high-density spatial mapping. However, for these low-cost sensors to be useful for these types of studies their accuracy and precision need to be quantified. We evaluated the Alphasense OPC-N2, a promising low-cost miniature optical particle counter, for monitoring ambient airborne particles at typical urban background sites in the UK. The precision of the OPC-N2 was assessed by co-locating 14 instruments at a site to investigate the variation in measured concentrations. Comparison to two different reference optical particle counters as well as a TEOM-FDMS enabled the accuracy of the OPC-N2 to be evaluated. Comparison of the OPC-N2 to the reference optical instruments shows some limitations for measuring mass concentrations of PM1, PM2.5 and PM10. The OPC-N2 demonstrated a significant positive artefact in measured particle mass during times of high ambient RH (> 85 %) and a calibration factor was developed based upon κ-Köhler theory, using average bulk particle aerosol hygroscopicity. Application of this RH correction factor resulted in the OPC-N2 measurements being within 33 % of the TEOM-FDMS, comparable to the agreement between a reference optical particle counter and the TEOM-FDMS (20 %). Inter-unit precision for the 14 OPC-N2 sensors of 22 ± 13 % for PM10 mass concentrations was observed. Overall, the OPC-N2 was found to accurately measure ambient airborne particle mass concentration provided they are (i) correctly calibrated and (ii) corrected for ambient RH. The level of precision demonstrated between multiple OPC-N2s suggests that they would be suitable devices for applications where the spatial variability in particle concentration was to be determined.


2019 ◽  
Vol 19 (13) ◽  
pp. 8471-8490 ◽  
Author(s):  
Jun Tao ◽  
Zhisheng Zhang ◽  
Yunfei Wu ◽  
Leiming Zhang ◽  
Zhijun Wu ◽  
...  

Abstract. To grasp the key factors affecting particle mass scattering efficiency (MSE), particle mass and number size distribution, PM2.5 and PM10 and their major chemical compositions, and the particle scattering coefficient (bsp) under dry conditions were measured at an urban site in Guangzhou, southern China, during 2015–2016. On an annual average, 10±2 %, 48±7 % and 42±8 % of PM10 mass were in the condensation, droplet and coarse modes, respectively, with mass mean aerodynamic diameters (MMADs) of 0.78±0.07 in the droplet mode and 4.57±0.42 µm in the coarse mode. The identified chemical species mass concentrations can explain 79±3 %, 82±6 % and 57±6 % of the total particle mass in the condensation, droplet and coarse mode, respectively. Organic matter (OM) and elemental carbon (EC) in the condensation mode, OM, (NH4)2SO4, NH4NO3, and crustal element oxides in the droplet mode, and crustal element oxides, OM, and CaSO4 in the coarse mode, were the dominant chemical species in their respective modes. The measured bsp can be reconstructed to the level of 91±10 % using Mie theory with input of the estimated chemically resolved number concentrations of NaCl, NaNO3, Na2SO4, NH4NO3, (NH4)2SO4, K2SO4, CaSO4, Ca(NO3)2, OM, EC, crustal element oxides and unidentified fraction. MSEs of particle and individual chemical species were underestimated by less than 13 % in any season based on the estimated bsp and chemical species mass concentrations. Seasonal average MSEs varied in the range of 3.5±0.1 to 3.9±0.2 m2 g−1 for fine particles (aerodynamic diameter smaller than 2.1 µm), which was mainly caused by seasonal variations in the mass fractions and MSEs of the dominant chemical species (OM, NH4NO3, (NH4)2SO4) in the droplet mode. MSEs of the dominant chemical species were determined by their lognormal size-distribution parameters, including MMADs and standard deviation (σ) in the droplet mode.


2018 ◽  
Vol 18 (20) ◽  
pp. 14979-15001 ◽  
Author(s):  
Christiane Schulz ◽  
Johannes Schneider ◽  
Bruna Amorim Holanda ◽  
Oliver Appel ◽  
Anja Costa ◽  
...  

Abstract. During the ACRIDICON-CHUVA field project (September–October 2014; based in Manaus, Brazil) aircraft-based in situ measurements of aerosol chemical composition were conducted in the tropical troposphere over the Amazon using the High Altitude and Long Range Research Aircraft (HALO), covering altitudes from the boundary layer (BL) height up to 14.4 km. The submicron non-refractory aerosol was characterized by flash-vaporization/electron impact-ionization aerosol particle mass spectrometry. The results show that significant secondary organic aerosol (SOA) formation by isoprene oxidation products occurs in the upper troposphere (UT), leading to increased organic aerosol mass concentrations above 10 km altitude. The median organic mass concentrations in the UT above 10 km range between 1.0 and 2.5 µg m−3 (referring to standard temperature and pressure; STP) with interquartile ranges of 0.6 to 3.2 µg m−3 (STP), representing 78 % of the total submicron non-refractory aerosol particle mass. The presence of isoprene-epoxydiol-derived secondary organic aerosol (IEPOX-SOA) was confirmed by marker peaks in the mass spectra. We estimate the contribution of IEPOX-SOA to the total organic aerosol in the UT to be about 20 %. After isoprene emission from vegetation, oxidation processes occur at low altitudes and/or during transport to higher altitudes, which may lead to the formation of IEPOX (one oxidation product of isoprene). Reactive uptake or condensation of IEPOX on preexisting particles leads to IEPOX-SOA formation and subsequently increasing organic mass in the UT. This organic mass increase was accompanied by an increase in the nitrate mass concentrations, most likely due to NOx production by lightning. Analysis of the ion ratio of NO+ to NO2+ indicated that nitrate in the UT exists mainly in the form of organic nitrate. IEPOX-SOA and organic nitrates are coincident with each other, indicating that IEPOX-SOA forms in the UT either on acidic nitrate particles forming organic nitrates derived from IEPOX or on already neutralized organic nitrate aerosol particles.


Sign in / Sign up

Export Citation Format

Share Document