Theoretical investigation on wave propagation in embedded DWBNNT conveying ferrofluid via stress and strain–inertia gradient elasticity

Author(s):  
A Ghorbanpour Arani ◽  
A Jalilvand ◽  
E Haghparast

In the present study, wave propagation characteristics of double-walled boron nitride nanotubes (DWBNNTs) conveying ferrofluid is investigated. Magnetite (Fe3O4) nanofluid is selected as a conveying fluid which reacted in presence of magnetic field. Shear effects of surrounded medium are taken into account using Pasternak model. Stress and strain–inertia gradient elasticity theories are used due to their capability to interpret size effect. Based on Hamilton’s principle and employing Euler–Bernoulli, Timoshenko and Reddy beam models, wave equations of motion in double-walled boron nitride nanotubes are derived and solved by harmonic solution. Regarding the various types of flow regimes in fluid–structure interaction, the upstream and downstream phase velocities of double-walled boron nitride nanotubes conveying ferrofluid are calculated. A detailed parametric study is conducted to clarify the influences of the beam models, size effect theories, magnetic field, surrounding elastic medium and fluid velocity on the wave propagation of double-walled boron nitride nanotubes conveying ferrofluid. The results indicated that in lower wave numbers, the effect of flowing fluid and the difference between the upstream and downstream phase velocities were considerable. The results of this work can be used in design and manufacturing of nanopipes and nanovalves conveying fluid flow to avoid water hammer phenomenon.

2013 ◽  
Vol 27 (10) ◽  
pp. 3063-3071 ◽  
Author(s):  
Ali Ghorbanpour Arani ◽  
Ali Hafizi Bidgoli ◽  
Abbas Karamali Ravandi ◽  
Mir Abbas Roudbari ◽  
Saeed Amir ◽  
...  

2017 ◽  
Vol 55 (4) ◽  
pp. 475 ◽  
Author(s):  
Danh Truong Nguyen

This work aimed at investigating the mechanicals properties of boron nitride nanotubes (BN-NTs) under uniaxial tension using atomic finite element method with Tersoff potential. The zigzag and armchair nanotubes with different length and diameter are considered for researching effect on mechanicals behavior of BN-NTs. It is found that Young’s modulus of BN-NTs are independent of the tubular length, but slightly increase when the diameter go rise. At the given strain, axial stress in the armchair tubes is higher than that in the zigzag ones.


1972 ◽  
Vol 8 (2) ◽  
pp. 127-135 ◽  
Author(s):  
D. N. Srivastava

The three important aspects of wave propagation in a stationary and a moving plasma (namely frequency, polarization and dispersion) are compared, taking the phase refractive index of the wave as the independent variable. Wave propagation and the motion of the plasma are taken to be along the magnetic field. The plasma is assumed to consist of one species only, and the effect of collisions is neglected. Wave propagation in a moving plasma has been shown to possess several important features, such as the absence of cyclotron resonance, reversal of the sense of polarization when the phase velocity becomes equal to the plasma velocity, and the existence of backward waves for very small and very large phase velocities.


1973 ◽  
Vol 10 (2) ◽  
pp. 197-202
Author(s):  
D. N. Srivastava

The dispersion relation for a collisionless moving electron plasma when the directions of motion and wave propagation are normal to the magnetic field is analyzed. It is shown that the ordinary wave remains unaffected, but the extraordinary wave shows a different behaviour, especially at small phase velocities. It has different cut-off frequencies, propagates for all frequencies from zero to infinity, changes the sense of polarization accompanied by anomalous dispersion and does not show any resonance.


2021 ◽  
Vol 23 (1) ◽  
pp. 219-228
Author(s):  
Nabanita Saikia ◽  
Mohamed Taha ◽  
Ravindra Pandey

The rational design of self-assembled nanobio-molecular hybrids of peptide nucleic acids with single-wall nanotubes rely on understanding how biomolecules recognize and mediate intermolecular interactions with the nanomaterial's surface.


2019 ◽  
Vol 22 (7) ◽  
pp. 470-482
Author(s):  
Samereh Ghazanfary ◽  
Fatemeh Oroojalian ◽  
Rezvan Yazdian-Robati ◽  
Mehdi Dadmehr ◽  
Amirhossein Sahebkar

Background: Boron Nitride Nanotubes (BNNTs) have recently emerged as an interesting field of study, because they could be used for the realization of developed, integrated and compact nanostructures to be formulated. BNNTs with similar surface morphology, alternating B and N atoms completely substitute for C atoms in a graphitic-like sheet with nearly no alterations in atomic spacing, with uniformity in dispersion in the solution, and readily applicable in biomedical applications with no obvious toxicity. Also demonstrating a good cell interaction and cell targeting. Aim and Objective: With a purpose of increasing the field of BNNT for drug delivery, a theoretical investigation of the interaction of Melatonin, Vitamin C, Glutathione and lipoic acid antioxidants using (9, 0) zigzag BNNTs is shown using density functional theory. Methods: The geometries corresponding to Melatonin, Vitamin C, Glutathione and lipoic acid and BNNT with different lengths were individually optimized with the DMOL3 program at the LDA/ DNP (fine) level of theory. Results: In the presence of external electric field Melatonin, Vitamin C, Glutathione and lipoic acid could be absorbed considerably on BNNT with lengths 22 and 29 Å, as the adsorption energy values in the presence of external electric field are considerably increased. Conclusion: The external electric field is an appropriate technique for adsorbing and storing antioxidants on BNNTs. Moreover, it is believed that applying the external electric field may be a proper method for controlling release rate of drugs.


2020 ◽  
Author(s):  
N. P. Boroznina ◽  
M. A. Vdovin ◽  
I. V. Zaporotskova ◽  
S. V. Boroznin ◽  
P. A. Zaporotskov

Sign in / Sign up

Export Citation Format

Share Document