On the models of erosive wear of ductile materials

Author(s):  
Wa’il R Tyfour ◽  
Mohammed T Hayajneh ◽  
Jawad M Qasaymeh

As the mechanism by which material is lost from ductile surfaces during solid particle erosion is still a matter of scientific debate, the work presented in this paper is aimed at trying to shed more light on the mechanism by which material is detached from ductile surfaces during solid particle erosion. Moreover, validating some of the most widely accepted models that predict erosive wear rate will form part of the paper. A specially designed test rig was used to facilitate test condition of an extensive experimental program. Results of the test program showed that plastic strain accumulation is largely responsible for material loss from ductile surfaces, even at cute impact angles. The key to this finding is the drop of erosive wear upon impact angle reversal indicates. It has been shown that none of the most widely accepted models of erosive wear could explain the result obtained under condition of impact angle reversal.

Author(s):  
N. H. Yang ◽  
H. Nayeb-Hashemi

The effect of solid particle erosion on the strength and fatigue properties of E-glass/epoxy composite was investigated. Solid particle erosion with SiC particles of 400 μm to 500 μm in diameter was simulated on 12 ply [45°/-45°/0°/45°/-45°/0°]s E-glass/epoxy composites with a constant particle velocity of 42.5 m/s and solid particle to air volume ratio of 6 kg/m3 at impact angles of 90°, 60°, and 30° for 30, 60, 90 and 120 seconds. Damaged and undamaged specimens were subjected to tensile tests while monitoring their acoustic emission (AE) activity. An erosion damage parameter was defined as a function of the particle impact angle and erosion duration to determine the residual tensile strength of the composite. Scanning electron microscope (SEM) images of the erosion damaged specimens revealed the same damage mechanism occurred at different impact angles. The AE stress delay parameter was used to predict the residual tensile strength of erosion damaged composites. Tension-tension fatigue tests were performed on virgin specimens and specimens exposed to erosion damage of 60 seconds and 90 seconds at 90° particle impact angle to observe the effects of erosion damage on the fatigue life. A modified Basquin's equation was defined to predict the fatigue life of the erosion damaged specimens.


2014 ◽  
Vol 1049-1050 ◽  
pp. 167-170
Author(s):  
Bao Hui Guo

The solid particle erosion behaviors of TC4 Alloy were studied at different erosion angles. The results show that the erosion rate of TC4 alloy at impact angle 30o was higher than those at the impact angles of both 60o and 90o. At low impact angle, the erosion mechanism could be concluded as grinding erosion and furrow erosion. However, the erosion mechanism could be fatigue erosion at large impact angle.


2018 ◽  
Vol 188 ◽  
pp. 03002
Author(s):  
Ekaterini Chantziara ◽  
Konstantinos Lentzaris ◽  
Angeliki G. Lekatou ◽  
Alexander E. Karantzalis

The main concept behind this work is to further enhance the attractive properties of aluminum by fabricating Al - WC composites and evaluating them in terms of their solid particle erosion response. Aluminum Matrix Composites (AMCs) were produced by the addition of submicron sized WC particles (up to 2.5vol %) into a melt of Al1050. Casting was assisted by the use of K2TiF6 as a wetting agent and mechanical stirring in order to minimize particle clustering. Extensive presence of in-situ intermetallic phases (Al4W, Al5W, Al12W, Al3(Ti,W), Al3Ti) was observed in the cast products. Particle distribution was reasonably uniform comprising both clusters and isolated particles. Solid particle erosion experiments were carried out for impact angles of 30°, 60° and 90°, using angular Al2O3 particles as the eroding medium and under 5 bar spraying pressure. The erosion rate was calculated by measuring the mass loss and the eroded surfaces were examined with SEM-EDX. Increased erosion resistance was observed for low particle additions (≤ 1.0 vol%WC). Finally, a possible erosion mechanism was proposed based on the material’s microstructural and morphological characteristics.


2020 ◽  
Vol 8 (5) ◽  
pp. 1605-1610 ◽  

In this present research work the solid particle erosion test carried on uncoated samples (Ti-31), and HVOF sprayed 10%Al2O3 -CoCrAlTaY on Ti-31 are made. Erosion test are done with impact angles of 30º, 60º and 90º. Solid particle erosion studies were carried out using air jet erosion test rig as per ASTM G76-02 standard.All the three angles of uncoated alloys exhibit erosion damage under ductile mode and less amount of erosive loss compared HVOF coated samples. The HVOF sprayed coated Ti-31 at various impact angles is brittle mode. The mechanism of material removal during erosion of brittle materials is explained by using SEM micrographs.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 286
Author(s):  
Shoya Mohseni-Mofidi ◽  
Eric Drescher ◽  
Harald Kruggel-Emden ◽  
Matthias Teschner ◽  
Claas Bierwisch

Solid particle erosion inevitably occurs if a gas–solid or liquid–solid mixture is in contact with a surface, e.g., in pneumatic conveyors. Having a good understanding of this complex phenomenon enables one to reduce the maintenance costs in several industrial applications by designing components that have longer lifetimes. In this paper, we propose a methodology to numerically investigate erosion behavior of ductile materials. We employ smoothed particle hydrodynamics that can easily deal with large deformations and fractures as a truly meshless method. In addition, a new contact model was developed in order to robustly handle contacts around sharp corners of the solid particles. The numerical predictions of erosion are compared with experiments for stainless steel AISI 304, showing that we are able to properly predict the erosion behavior as a function of impact angle. We present a powerful tool to conveniently study the effect of important parameters, such as solid particle shapes, which are not simple to study in experiments. Using the methodology, we study the effect of a solid particle shape and conclude that, in addition to angularity, aspect ratio also plays an important role by increasing the probability of the solid particles to rotate after impact. Finally, we are able to extend a widely used erosion model by a term that considers a solid particle shape.


Author(s):  
N. H. Yang ◽  
H. Nayeb-Hashemi

The effect of solid particle erosion on the strength properties of E-glass/epoxy composite was investigated. Solid particle erosion with SiC particles 400 μm to 500 μm in diameter was simulated on 12 ply [45°/−45°/0°/45°/−45°/0°]s E-glass/epoxy composites with constant particle velocity of 42.5 m/s at impact angles of 90°, 60°, and 30° for 30, 60, 90 and 120 seconds. Damaged and undamaged specimens were subjected to tensile tests while monitoring their acoustic emission (AE) activity. An erosion damage parameter was defined as a function of the particle impact angle and erosion duration to determine the residual tensile strength of the composite. Scanning electron microscope (SEM) images of the erosion damaged specimens revealed the same damage mechanism occurred at different impact angles. The distribution of AE events by event duration, ring down counts and energy distribution were used to characterize the different damage mechanisms that occurred during tensile loading of damaged and undamaged specimens. The results showed AE activity could be used to distinguish between different damage mechanisms within the composite, such as fiber/matrix debonding, delamination and fiber fracture. The Weibull probability distribution model and the AE stress delay parameter model were developed to relate the AE activity to the erosion damage and residual strength. The results showed both the Weibull probability model and the stress delay model could be used to predict residual strength of the composites.


Sign in / Sign up

Export Citation Format

Share Document