Research on Solid Particle Erosion Behaviors of TC4 Alloy at Different Erosion Angles

2014 ◽  
Vol 1049-1050 ◽  
pp. 167-170
Author(s):  
Bao Hui Guo

The solid particle erosion behaviors of TC4 Alloy were studied at different erosion angles. The results show that the erosion rate of TC4 alloy at impact angle 30o was higher than those at the impact angles of both 60o and 90o. At low impact angle, the erosion mechanism could be concluded as grinding erosion and furrow erosion. However, the erosion mechanism could be fatigue erosion at large impact angle.

Author(s):  
Shunsen Wang ◽  
Guanwei Liu ◽  
Jingru Mao ◽  
Zhenping Feng

This study is concerned with experiments for the relation of solid particle erosion (SPE) and the nozzle profiles. The exfoliated scale from boiler tubing results in hard particles that erode steam turbine components, especially on the control stage nozzles of high parameters turbine. To characterize SPE, solid particle trajectory is measured using particle image velocimetry (PIV) and its relation with the erosion rate of the nozzle surfaces is correlated. In addition, erosion characteristic of nozzle material is investigated by experiments and results reveal that the erosion rate is directly proportional to the impacting velocity of particles with the power of 2.31 and the maximum erosion rate is taken place at the impact angle of 20–25 degree. Furthermore, 0.5% increase in the erosion rate for every one degree of steam temperature rise is observed in the range of 839K∼883K. The erosion rate of front-loaded nozzle A is 2∼3 times higher than that of conventional design nozzle B. The life cycle of nozzle is determined by the erosion of outlet edge, and the life of nozzle B is about 5 times as long as the life of nozzle A. Based on the relation of erosion rate and nozzle profile characteristic, it can be inferred that a aft-loaded nozzle with a contoured endwall substituting a planar endwall may outperform over other nozzle profiles in anti-SPE, prolonging the life cycle of the nozzle.


Author(s):  
N. H. Yang ◽  
H. Nayeb-Hashemi

The effect of solid particle erosion on the strength and fatigue properties of E-glass/epoxy composite was investigated. Solid particle erosion with SiC particles of 400 μm to 500 μm in diameter was simulated on 12 ply [45°/-45°/0°/45°/-45°/0°]s E-glass/epoxy composites with a constant particle velocity of 42.5 m/s and solid particle to air volume ratio of 6 kg/m3 at impact angles of 90°, 60°, and 30° for 30, 60, 90 and 120 seconds. Damaged and undamaged specimens were subjected to tensile tests while monitoring their acoustic emission (AE) activity. An erosion damage parameter was defined as a function of the particle impact angle and erosion duration to determine the residual tensile strength of the composite. Scanning electron microscope (SEM) images of the erosion damaged specimens revealed the same damage mechanism occurred at different impact angles. The AE stress delay parameter was used to predict the residual tensile strength of erosion damaged composites. Tension-tension fatigue tests were performed on virgin specimens and specimens exposed to erosion damage of 60 seconds and 90 seconds at 90° particle impact angle to observe the effects of erosion damage on the fatigue life. A modified Basquin's equation was defined to predict the fatigue life of the erosion damaged specimens.


Author(s):  
Wa’il R Tyfour ◽  
Mohammed T Hayajneh ◽  
Jawad M Qasaymeh

As the mechanism by which material is lost from ductile surfaces during solid particle erosion is still a matter of scientific debate, the work presented in this paper is aimed at trying to shed more light on the mechanism by which material is detached from ductile surfaces during solid particle erosion. Moreover, validating some of the most widely accepted models that predict erosive wear rate will form part of the paper. A specially designed test rig was used to facilitate test condition of an extensive experimental program. Results of the test program showed that plastic strain accumulation is largely responsible for material loss from ductile surfaces, even at cute impact angles. The key to this finding is the drop of erosive wear upon impact angle reversal indicates. It has been shown that none of the most widely accepted models of erosive wear could explain the result obtained under condition of impact angle reversal.


2006 ◽  
Vol 118 ◽  
pp. 201-208
Author(s):  
Kee Won Urm ◽  
Sun Ho Lee ◽  
J.W. Lee ◽  
E.Y. Lee

12Cr steels have been applied on the turbine bucket and nozzle partition materials for the ultra super critical (USC) coal-fired power plant. Turbine bucket and nozzle materials are damaged by the solid particles within USC steam conditions. Therefore, they have been protected by the surface treatments such as ion nitriding, boriding and chrome carbide high velocity oxygen fuel (HVOF) spray coating. In this study, the surface treatment effects on the solid particle erosion (SPE) characteristic of 12Cr steels were examined in the temperature range of 540 to 620°C and the mechanisms of surface damage are investigated. The SPE of 12Cr steel originated from micro cutting, whereas, that of boriding and chrome carbide HVOF spray originated from the repeated collision, crack initiation and propagation. In case of 12Cr bare steel, the erosion of soft materials occurred in the impact angle range of 30° to 60° at test temperatures. The SPE resistances of boride and HVOF treated steels in the impact angle range of 30° to 60° at 593°C and 621°C were much higher than those of 12Cr bare steel.


2011 ◽  
Vol 239-242 ◽  
pp. 1165-1170
Author(s):  
Xiao Qing Lian ◽  
Xiu Mei Feng ◽  
Ming Xue Jiang

Erosion tests on high strengh refractory castables were carried out using SiC grains at impact angles of 30°,45°,60°,and 90° with the velocity of 5m/s.In order to study the variation in stress and system energy with impact angles during solid particle erosion process,a single particle erosion model was designed by means of three-dimensional explicit dynamic software ANSYS/LS-DYNA according to experiment parameters. The Johnson-Holmquist brittle ceramic model was employed to model the failure of target material. The impact angles varied from 15° to 90° in increments of 15°.The simulation results were compared with erosion rate values from experiments. The results show that the variation trends of both the maximum stress of targets and system total energy loss are in a good agreement with experiment data,which increaes with increasing impact angle. The variation of erosion rate as a function of impact angle can be explained by the variation of the maximum stress of target material. The rule “the maximum erosion of typical brittle material occurs at 90°” is confirmed by the view of energy analysis.


Wear ◽  
1996 ◽  
Vol 196 (1-2) ◽  
pp. 263-269 ◽  
Author(s):  
Y. Ballout ◽  
J.A. Mathis ◽  
J.E. Talia

2018 ◽  
Vol 188 ◽  
pp. 03002
Author(s):  
Ekaterini Chantziara ◽  
Konstantinos Lentzaris ◽  
Angeliki G. Lekatou ◽  
Alexander E. Karantzalis

The main concept behind this work is to further enhance the attractive properties of aluminum by fabricating Al - WC composites and evaluating them in terms of their solid particle erosion response. Aluminum Matrix Composites (AMCs) were produced by the addition of submicron sized WC particles (up to 2.5vol %) into a melt of Al1050. Casting was assisted by the use of K2TiF6 as a wetting agent and mechanical stirring in order to minimize particle clustering. Extensive presence of in-situ intermetallic phases (Al4W, Al5W, Al12W, Al3(Ti,W), Al3Ti) was observed in the cast products. Particle distribution was reasonably uniform comprising both clusters and isolated particles. Solid particle erosion experiments were carried out for impact angles of 30°, 60° and 90°, using angular Al2O3 particles as the eroding medium and under 5 bar spraying pressure. The erosion rate was calculated by measuring the mass loss and the eroded surfaces were examined with SEM-EDX. Increased erosion resistance was observed for low particle additions (≤ 1.0 vol%WC). Finally, a possible erosion mechanism was proposed based on the material’s microstructural and morphological characteristics.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Xiaochao Li ◽  
Shusen Chen ◽  
Zhaohui Huang ◽  
Minghao Fang ◽  
Yan’gai Liu ◽  
...  

Solid particle erosion-wear experiments on as-prepared mullite-SiC composite refractories by nitriding reactive sintering were performed at elevated temperatures, using sharp black SiC abrasive particles at an impact speed of 50 m/s and the impact angle of 90° in the air atmosphere. The effects of silicon powder addition and erosion temperature on the erosion-wear resistance of mullite-SiC composite refractories were studied. The test results reveal that Si powders caused nitriding reaction to formβ-sialon whiskers in the matrix of mullite-SiC composite refractories. The erosion-wear resistance of mullite-SiC composite refractories was improved with the increase of silicon powder addition and erosion temperature, and the minimum volume erosion rate was under the condition of 12% silicon added and a temperature of 1400°C. The major erosion-wear mechanisms of mullite-SiC composite refractories were brittle erosion at the erosion temperature from room temperature to 1000°C and then plastic deformation from 1200°C to 1400°C.


Author(s):  
Bijan Mohammadi ◽  
AmirSajjad Khoddami

Solid particle erosion is one of the main failure mechanisms of a compressor blade. Thus, characterization of this damage mode is very important in life assessment of the compressor. Since experimental study of solid particle erosion needs special methods and equipment, it is necessary to develop erosion computer models. This study presents a coupled temperature–displacement finite element model to investigate damage of a compressor blade due to multiple solid particles erosion. To decrease the computational cost, a representative volume element technique is introduced to simulate simultaneous impact of multiple particles. Blade has been made of Ti-6Al-4V, a ductile titanium-based alloy, which is impacted by alumina particles. Erosion finite element modeling is assumed as a micro-scale impact problem and Johnson–Cook constitutive equations are used to describe Ti-6Al-4V erosive behavior. In regard to a wide variation range in thermal conditions all over the compressor, it is divided into three parts (first stages, middle stages, and last stages) in which each part has an average temperature. Effective parameters on erosive behavior of the blade alloy, such as impact angle, particles velocity, and particles size are studied in these three temperatures. Results show that middle stages are the most critical sites of the compressor in terms of erosion damage. An exponential relation is observed between erosion rate and particles velocity. The dependency of erosion rate on size of particles at high temperatures is indispensable.


Sign in / Sign up

Export Citation Format

Share Document