Multi-objective optimizations of the boot injection strategy for reactivity controlled compression ignition engines

2018 ◽  
Vol 20 (8-9) ◽  
pp. 889-910 ◽  
Author(s):  
Kaveh Yazdani ◽  
Ehsan Amani ◽  
Hamid Naderan

In this study, multi-objective optimizations of a reactivity controlled compression ignition engine are performed. The main focus is the investigation of effects of seven design variables, including swirl ratio, the first and second start of injections (SOI1 and SOI2), and four injection rate-shape parameters, on the objective parameters, namely, gross indicated efficiency, the second-law efficiency, ringing intensity, and emissions. The results show that in the low swirl ratio range (swirl ratio < 1), the emissions decrease by either increasing boot length or decreasing boot velocity. The physical analysis reveals that this is due to the penetration of the high-reactivity fuel vapor in whole squish area and a large portion of the crevice. This is because the more uniform mixture in the squish region slightly mitigates the formation of hot spots and NOx, and the propagation of reaction deeper into the crevice considerably reduces carbon monoxide and unburned hydrocarbons there. The sensitivity analysis manifests that swirl ratio has the strongest effect on all objectives, and besides swirl ratio, SOI2 has the greatest impact on gross indicated efficiency and emission, while SOI1 has the strongest influence on second-law efficiency and ringing intensity. The optimal case with an advance of SOI1 and a slight retard of SOI2, that is, a longer duration between the two injections, a lower swirl ratio (of 0.5) with respect to the base case, and appropriate injection rate-shape parameters (a high boot length and low boot velocity), achieves the gross indicated efficiency of 54% and merit function of 615.

Author(s):  
Mostafa Mohebbi ◽  
Masoud Reyhanian ◽  
Iraj Ghofrani ◽  
Azhar Abdul Aziz ◽  
Vahid Hosseini

Unfortunately, energy demands and destruction of the environment from uncontrolled manipulation of fossil fuels have increased. Climate change concerns have resulted in the rapid use of new, alternative combustion technologies. In this study, reactivity controlled compression ignition (RCCI) combustion, which can simply be exploited in internal combustion (IC) engines, is investigated. To introduce and identify extra insightful information, an exergy-based study was conducted to classify various irreversibility and loss sources. Multidimensional models were combined with the primary kinetics mechanism to investigate RCCI combustion, incorporating the second law of thermodynamics. The n-heptane, a highly reactive fuel, was supplied by direct injection into the cylinder, whereas premixed fuel was supplied through the intake port in an isooctane/ n-heptane RCCI engine. For five n-heptane increments (5%, 7.5%, 15%, 25%, and 40%) and six different exhaust gas recirculation (EGR) rates (0%, 10%, 20%, 30%, 40%, and 50%), accumulation of different exergy terms was calculated. The results show that as EGR introduction increases from 0% to 50%, the exergy destruction increases from 21.1% to 28.9%. Furthermore, the value of exhaust thermomechanical exergy decreases from 18.4% to 14.4% of the mixture fuel chemical exergy. Among the five different high reactive fuel mass regimes, the 40% n-heptane mass fraction has the major heat transfer exergy owing to its advanced CA50 that exerts a unique influence on cylinder charge temperature of heat transfer layer. The utilization efficiency of exhaust in RCCI is less affected by the variation of reactive fuel mass fraction by contrast; it will significantly influence heat transfer availability. This study revealed that with increasing reactive fuel ( n-heptane) from 7.5% to 40% the irreversibility decreased from 28.6% to 25.8% and the second law efficiency first increased from 43.2% to 44.6% at 15% n-heptane then decreased to 42.9% at 40% n-heptane.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4621
Author(s):  
P. A. Harari ◽  
N. R. Banapurmath ◽  
V. S. Yaliwal ◽  
T. M. Yunus Khan ◽  
Irfan Anjum Badruddin ◽  
...  

In the current work, an effort is made to study the influence of injection timing (IT) and injection duration (ID) of manifold injected fuels (MIF) in the reactivity controlled compression ignition (RCCI) engine. Compressed natural gas (CNG) and compressed biogas (CBG) are used as the MIF along with diesel and blends of Thevetia Peruviana methyl ester (TPME) are used as the direct injected fuels (DIF). The ITs of the MIF that were studied includes 45°ATDC, 50°ATDC, and 55°ATDC. Also, present study includes impact of various IDs of the MIF such as 3, 6, and 9 ms on RCCI mode of combustion. The complete experimental work is conducted at 75% of rated power. The results show that among the different ITs studied, the D+CNG mixture exhibits higher brake thermal efficiency (BTE), about 29.32% is observed at 50° ATDC IT, which is about 1.77, 3.58, 5.56, 7.51, and 8.54% higher than D+CBG, B20+CNG, B20+CBG, B100+CNG, and B100+CBG fuel combinations. The highest BTE, about 30.25%, is found for the D+CNG fuel combination at 6 ms ID, which is about 1.69, 3.48, 5.32%, 7.24, and 9.16% higher as compared with the D+CBG, B20+CNG, B20+CBG, B100+CNG, and B100+CBG fuel combinations. At all ITs and IDs, higher emissions of nitric oxide (NOx) along with lower emissions of smoke, carbon monoxide (CO), and hydrocarbon (HC) are found for D+CNG mixture as related to other fuel mixtures. At all ITs and IDs, D+CNG gives higher In-cylinder pressure (ICP) and heat release rate (HRR) as compared with other fuel combinations.


Fuel ◽  
2020 ◽  
Vol 281 ◽  
pp. 118751 ◽  
Author(s):  
Josimar Souza Rosa ◽  
Mario Eduardo Santos Martins ◽  
Giovani Dambros Telli ◽  
Carlos Roberto Altafini ◽  
Paulo Roberto Wander ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document