Detonation development from a hot spot in methane/air mixtures: Effects of kinetic models

2020 ◽  
pp. 146808742094461
Author(s):  
Jingyi Su ◽  
Peng Dai ◽  
Zheng Chen

Natural gas is a promising alternative fuel which can be used in internal combustion engines to achieve low carbon emission and high thermal efficiency. However, at high compression ratio, super-knock due to detonation development might occur. In this study, the autoignitive reaction front propagation and detonation development from a hot spot were investigated numerically and the main component of natural gas, methane, was considered. The objective is to assess the performance of different kinetic models in terms of predicting hot spot–induced detonation development in methane/air mixtures. First, simulations for the constant-volume homogeneous ignition in a stoichiometric methane/air mixture were conducted. The ignition delay time, excitation time, critical temperature gradient, thermal sensitivity and reduced activation energy predicted by different kinetic models were obtained and compared. It was found that there are notable discrepancies among the predictions by different kinetic models. Then, hundreds of one-dimensional simulations were conducted for detonation development from a hot spot in a stoichiometric CH4/air mixture. Different autoignition modes were identified and the detonation regimes were derived based on the peak pressure and reaction front propagation speed. It was found that even at the same conditions, different propagation modes can be predicted by different kinetic models. The broadest detonation development regime was predicted by the reduced GRI mechanism, while a relatively narrow regime was predicted by the recent kinetic models such as FFCM-1 and Aramco 3.0. The present results indicate that super-knock prediction strongly depends on the kinetic model used in simulations. Therefore, significant efforts should be devoted to the development and validation of kinetic models for natural gas at engine conditions.

Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3734
Author(s):  
Javier Monsalve-Serrano ◽  
Giacomo Belgiorno ◽  
Gabriele Di Blasio ◽  
María Guzmán-Mendoza

Notwithstanding the policies that move towards electrified powertrains, the transportation sector mainly employs internal combustion engines as the primary propulsion system. In this regard, for medium- to heavy-duty applications, as well as for on- and off-road applications, diesel engines are preferred because of the better efficiency, lower CO2, and greater robustness compared to spark-ignition engines. Due to its use at a large scale, the internal combustion engines as a source of energy depletion and pollutant emissions must further improved. In this sense, the adoption of alternative combustion concepts using cleaner fuels than diesel (e.g., natural gas, ethanol and methanol) presents a viable solution for improving the efficiency and emissions of the future powertrains. Particularly, the methane–diesel dual-fuel concept represents a possible solution for compression ignition engines because the use of the low-carbon methane fuel, a main constituent of natural gas, as primary fuel significantly reduces the CO2 emissions compared to conventional liquid fuels. Nonetheless, other issues concerning higher total hydrocarbon (THC) and CO emissions, mainly at low load conditions, are found. To minimize this issue, this research paper evaluates, through a new and alternative approach, the effects of different engine control parameters, such as rail pressure, pilot quantity, start of injection and premixed ratio in terms of efficiency and emissions, and compared to the conventional diesel combustion mode. Indeed, for a deeper understanding of the results, a 1-Dimensional spray model is used to model the air-fuel mixing phenomenon in response to the variations of the calibration parameters that condition the subsequent dual-fuel combustion evolution. Specific variation settings, in terms of premixed ratio, injection pressure, pilot quantity and combustion phasing are proposed for further efficiency improvements.


2021 ◽  
Vol 313 ◽  
pp. 01002
Author(s):  
Sonja Koščak Kolin ◽  
Vincenzo Naso ◽  
Antonello Binni ◽  
Antun Bošnjak

As the energy efficiency is at the heart of the integrated European Union energy policy, which aims to protect the environment through various research projects, the application of the Stirling engine for diffused electricity generation is one of the possible paths for low-carbon application. That is today particularly topical, just looking at the major interest paid at European level at the energy communities, also in terms of incentives and policies facilitating and supporting such initiatives. Although the tested engine V-160 runs on natural gas, its emissions can be neglected in comparison with the internal combustion engines, due to the much more favourable external combustion under the lower pressures and temperatures, as well as to the working medium, which is helium. Next step, becoming every day more and more relevant, will be using hydrogen as a clean (and green) fuel. A major advantage of the proposed engine for use in power generation is the constant speed under different loads. According to the thorough parametric analysis after 200 hours of operation of the engine at the University of Rome La Sapienza, new evidence of the possibilities of performance improvement was obtained. Compared to the Stirling engine with low temperature difference, it has a much lower Schmidt factor of about 21%, which means that a real thermodynamic efficiency of the cycle could be improved. The scope of the analysis was to determine the power that is changed due to the mass of helium and the power that is changed due to the temperature difference. Based on the experimental data, it is found that the temperature difference and the mass of the working medium have a reciprocal relationship. In such a working condition, the engine power is simultaneously increased due to the greater mass of helium, but at the same time decreased due to the decrease in the temperature difference, which is not valid for other types of Stirling engines. The resulting power can be optimized according to a new expression, presented in the paper.


2019 ◽  
Vol 142 (1) ◽  
Author(s):  
Juan Sebastián Zuleta Marín ◽  
Eduardo Konrad Burin ◽  
Edson Bazzo

Abstract Two combined cooling heating power (CCHP) plant layouts are proposed to supply the electricity, heat, and cooling energy demands of textile industries. In the first scenario, natural gas fueled internal combustion engines are integrated with a heat recovery steam generator (HRSG) and a hot water absorption chiller to produce electricity, saturated steam, and chilled water for air conditioning purposes. In the second concept, a linear Fresnel solar field is integrated with the same CCHP to provide fuel economy during the sunny hours. The proposed plants were compared with a base case scenario in which electricity is imported from the grid, saturated steam is provided by a natural gas steam generator (NGSG), and chilled water is provided by electric chillers. Simulations were performed considering mass and energy conservation equations, information provided by equipment manufacturers and typical meteorological year (TMY) data sets for three different locations. The economic performance of plants was evaluated by calculating the net present value (NPV), the internal rate of return (IRR), and the discounted payback period (DPP) of investments. As an important result, a great potential for reducing the fuel consumption and CO2 emissions of hybrid concept was identified. However, the high investment of Fresnel collectors coupled with low natural gas prices showed the proposed hybrid concept as economically unfeasible. Nevertheless, it is expected that hybrid systems will have an important role once Fresnel technology costs are continuously declining and solar energy appears as a promising alternative for the sustainable transition to a low carbon future.


2021 ◽  
Vol 312 ◽  
pp. 08019
Author(s):  
Pietro Bartocci ◽  
Alberto Abad ◽  
Arturo Cabello ◽  
Mauro Zampilli ◽  
Giulio Buia ◽  
...  

The Power Sector is undergoing a rapid technological change with respect to implementation of low carbon technologies. The IEA Energy Outlook 2017 shows that the investments in Renewables for the first time are equal to those on the fossil sources. It is likely that the conventional gas turbines and internal combustion engines will need to be integrated in systems employing biofuels and/or CCUS (Carbon Capture Usage and Storage). Also, the European Union is moving rapidly towards low carbon technologies (i.e. Energy Efficiency, Smart Grids, Renewables and CCUS), see the Energy Union Strategy. Currently 28% of the installed power capacity in Europe is based on natural gas plants. Gas-based power capacity has reached 418 GW in 2016 and is likely to continue to grow in the future. To efficiently capture the carbon dioxide emissions generated by the combustion of natural gas in the combustion chamber a possible solution could be to adopt new combustion processes, like Chemical Looping Combustion. The combination of CLC and GTs can decrease the efficiency of a combined cycle power plant from 60% to about 40.34%. These performances influence costs and environmental burdens and this is also the same for oxyfuel combustion, which is a competing technology to realize CCS. This paper, starting from literature mass and energy balances of a conventional combined cycle, a combined cycle coupled with chemical looping combustor and a combined cycle coupled with oxyfuel combustion, calculates the reduction of CO2 emissions which can be achieved during the whole life cycle of the power plant and then identifies the value of the carbon credit which is needed to have an interesting payback period for such kind of investment.


Catalysts ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 660
Author(s):  
Izabela S. Pieta ◽  
Alicja Michalik ◽  
Elka Kraleva ◽  
Dusan Mrdenovic ◽  
Alicja Sek ◽  
...  

Within the Waste2Fuel project, innovative, high-performance, and cost-effective fuel production methods from municipal solid wastes (MSWs) are sought for application as energy carriers or direct drop-in fuels/chemicals in the near-future low-carbon power generation systems and internal combustion engines. Among the studied energy vectors, C1-C2 alcohols and ethers are mainly addressed. This study presents a potential bio-derived ethanol oxidative coupling in the gas phase in multicomponent systems derived from hydrotalcite-containing precursors. The reaction of alcohol coupling to ethers has great importance due to their uses in different fields. The samples have been synthesized by the co-precipitation method via layered double hydroxide (LDH) material synthesis, with a controlled pH, where the M(II)/M(III) ≈ 0.35. The chemical composition and topology of the sample surface play essential roles in catalyst activity and product distribution. The multiple redox couples Ni2+/Ni3+, Cr2+/Cr3+, Mn2+/Mn3+, and the oxygen-vacant sites were considered as the main active sites. The introduction of Cr (Cr3+/Cr4+) and Mn (Mn3+/Mn4+) into the crystal lattice could enhance the number of oxygen vacancies and affect the acid/base properties of derived mixed oxides, which are considered as crucial parameters for process selectivity towards bio-DEE and bio-butanol, preventing long CH chain formation and coke deposition at the same time.


2021 ◽  
pp. 146808742110050
Author(s):  
Enrica Malfi ◽  
Vincenzo De Bellis ◽  
Fabio Bozza ◽  
Alberto Cafari ◽  
Gennaro Caputo ◽  
...  

The adoption of lean-burn concepts for internal combustion engines working with a homogenous air/fuel charge is under development as a path to simultaneously improve thermal efficiency, fuel consumption, nitric oxides, and carbon monoxide emissions. This technology may lead to a relevant emission of unburned hydrocarbons (uHC) compared to a stoichiometric engine. The uHC sources are various and the relative importance varies according to fuel characteristics, engine operating point, and some geometrical details of the combustion chamber. This concern becomes even more relevant in the case of engines supplied with natural gas since the methane has a global warming potential much greater than the other major pollutant emissions. In this work, a simulation model describing the main mechanisms for uHC formation is proposed. The model describes uHC production from crevices and flame wall quenching, also considering the post-oxidation. The uHC model is implemented in commercial software (GT-Power) under the form of “user routine”. It is validated with reference to two large bore engines, whose bores are 31 and 46 cm (engines named accordingly W31 and W46). Both engines are fueled with natural gas and operated with lean mixtures (λ > 2), but with different ignition modalities (pre-chamber device or dual fuel mode). The engines under study are preliminarily schematized in the 1D simulation tool. The consistency of 1D engine schematizations is verified against the experimental data of BMEP, air flow rate, and turbocharger rotational speed over a load sweep. Then, the uHC model is validated against the engine-out measurements. The averaged uHC predictions highlight an average error of 7% and 10 % for W31 and W46 engines, respectively. The uHC model reliability is evidenced by the lack of need for a case-dependent adjustment of its tuning constants, also in presence of relevant variations of both engine load and ring pack design.


Author(s):  
Alia A. Shakour ◽  
Ahmed A. El-Abssawy ◽  
Yasser H. Ibrahim

2015 ◽  
Vol 1092-1093 ◽  
pp. 498-503
Author(s):  
La Xiang ◽  
Yu Ding

Natural gas (NG) is one of the most promising alternative fuels of diesel and petrol because of its economics and environmental protection. Generally the NG engine share the similar structure profile with diesel or petrol engine but the combustion characteristics of NG is varied from the fuels, so the investigation of NG engine combustion process receive more attentions from the researchers. In this paper, a zero-dimensional model on the basis of Vibe function is built in the MATLAB/SIMULINK environment. The model provides the prediction of combustion process in natural gas engines, which has been verified by the experimental data in the NG test bed. Furthermore, the influence of NG composition on engine performance is investigated, in which the in-cylinder maximum pressure and temperature and mean indicated pressure are compared using different type NG. It is shown in the results that NG with higher composition of methane results in lower maximum temperature and mean indicated pressure as well as higher maximum pressure.


Sign in / Sign up

Export Citation Format

Share Document