scholarly journals Heat release rate and emissions regimes of stratified pilot-ignited direct-injection natural gas combustion

2021 ◽  
pp. 146808742110469
Author(s):  
Jeremy Rochussen ◽  
Gordon McTaggart-Cowan ◽  
Patrick Kirchen

Natural gas (NG) is an attractive fuel for heavy-duty internal combustion engines because of its potential for reduced CO2, particulate, and NOX emissions and lower cost of ownership. Pilot-ignited direct-injected NG (PIDING) combustion uses a small pilot injection of diesel to ignite a main direct injection of NG. Recent studies have demonstrated that increased NG premixing is a viable strategy to increase PIDING indicated efficiency and further reduce particulate and CO emissions while maintaining low CH4 emissions. However, it is unclear how the combustion strategies relate to one another, or where they fit within the continuum of NG stratification. The objective of this work is to present a systematic evaluation of pilot combustion, NG combustion, and emissions behavior of stratified-premixed PIDING combustion modes that span from fully-premixed to non-premixed conditions. A sweep of the relative injection timing, [Formula: see text], of NG and pilot diesel was performed in a heavy-duty PIDING engine with [Formula: see text] = 140–220 bar, [Formula: see text] = 0.47–0.71, and a constant NG energy fraction of 94%. Apparent heat release rate and emissions analyses identified interactions between the pilot fuel and NG, and qualitatively characterized the impact of NG stratification on combustion and emissions. Changes in the [Formula: see text] resulted in six distinct PIDING combustion regimes, for all considered injection pressures and equivalence ratios: (i) RIT-insensitive premixed, (ii) stratified-premixed (early-cycle injection), (iii) NG jet impingement transition, (iv) stratified-premixed (late-cycle injection), (v) variable premixed fraction, and (vi) minimally-premixed. Parametric definitions for the bounds of each regime of combustion were valid for the wide range of [Formula: see text] and [Formula: see text] investigated, and are expected to be relevant for other PIDING engines, as previously identified regimes agree with those identified here. This conceptual framework encompasses and validates the findings of previous stratified PIDING investigations, including optimal ranges of operation that provide significantly increased efficiency and lower emissions of incomplete combustion products.

Author(s):  
Georg Fink ◽  
Michael Jud ◽  
Thomas Sattelmayer

In this paper, pilot-ignited high pressure dual-fuel (HPDF) combustion of a natural gas jet is investigated on a fundamental basis by applying two separate single-hole injectors to a rapid compression expansion machine (RCEM). A Shadowgraphy system is used for optical observations, and the combustion progress is assessed in terms of heat release rates. The experiments focus on the combined influence of injection timing and geometrical jet arrangement on the jet interaction and the impact on the combustion process. In a first step, the operational range for successful pilot self-ignition and transition to natural gas jet combustion is determined, and the restricting phenomena are identified by analyzing the shadowgraph images. Within this range, the combustion process is assessed by evaluation of ignition delays and heat release rates. Strong interaction is found to delay or even prohibit pilot ignition, while it facilitates a fast and stable onset of the gas jet combustion. Furthermore, it is shown that the heat release rate is governed by the time of ignition with respect to the start of natural gas injection — as this parameter defines the level of premixing. Evaluation of the time of gas jet ignition within the operability map can therefore directly link a certain spatial and temporal interaction to the resulting heat release characteristics. It is finally shown that controlling the heat release rate through injection timing variation is limited for a certain angle between the two jets.


Author(s):  
Joseph Gerard T. Reyes ◽  
Edwin N. Quiros

The combustion duration in an internal combustion engine is the period bounded by the engine crank angles known as the start of combustion (SOC) and end of combustion (EOC), respectively. This period is essential in analysis of combustion for the such as the production of exhaust emissions. For compression-ignition engines, such as diesel engines, several approaches were developed in order to approximate the crank angle for the start of combustion. These approaches utilized the curves of measured in-cylinder pressures and determining by inspection the crank angle where the slope is steep following a minimum value, indicating that combustion has begun. These pressure data may also be utilized together with the corresponding cylinder volumes to generate the apparent heat release rate (AHRR), which shows the trend of heat transfer of the gases enclosed in the engine cylinder. The start of combustion is then determined at the point where the value of the AHRR is minimum and followed by a rapid increase in value, whereas the EOC is at the crank angle where the AHRR attains a flat slope prior to the exhaust stroke of the engine. To verify the location of the SOC, injection line pressures and fuel injection timing are also used. This method was applied in an engine test bench using a four-cylinder common-rail direct injection diesel engine with a pressure transducer installed in the first cylinder. Injector line pressures and fuel injector voltage signals per engine cycle were also recorded and plotted. By analyzing the trends of this curves in line with the generated AHRR curves, the SOC may be readily determined.


Author(s):  
Michael Jud ◽  
Georg Fink ◽  
Thomas Sattelmayer

In this paper, a multidimensional computational fluid dynamics (CFD) model coupled with detailed chemistry calculations was used to analyze dual-fuel combustion based on high pressure direct injection of natural gas. The main focus was to analyze the capability of predicting pressure curve and heat release rate (HRR) for different injection strategies. Zero-dimensional homogeneous constant volume reactor calculations were used to select a reaction mechanism for the temperature range below 800 K. As the best-performing mechanism, the Chalmers mechanism was chosen. To validate the numerical model, the setup was first split into a single gas injection and a single Diesel injection. They were validated individually using shadowgraphs obtained from a Rapid Compression Expansion Machine (RCEM). Diesel ignition timing and position in the combustion chamber were close to experimental results. Gas direct injection showed good agreement with regard to penetration and mixing. In the dual-fuel setup, the injection timing of natural gas was varied to create a first case with mainly diffusive combustion and a second case with mainly premixed combustion of natural gas. For both setups good agreement with pressure curve and heat release rate were achieved. A qualitative comparison of shadowgraphs with the density field highlights the important points to predict dual-fuel combustion.


2014 ◽  
Vol 651-653 ◽  
pp. 866-874 ◽  
Author(s):  
Liang Chen ◽  
Hong Zeng ◽  
Xiao Bei Cheng

A 6-cylinder, turbocharged, common rail heavy-duty diesel engine was used in this study. The effect of pilot injection strategies on diesel fuel combustion process, heat release rate, emission and economy of diesel engine is studied. The pilot injection strategies include pilot injection timing and pilot injection mass to achieve the homogeneous compression ignition and lower temperature combustion of diesel engine. The two-color method was applied to take the flame images in the engine cylinder and obtain soot concentration distribution. The results demonstrate that with the advance of pilot injection timing, the peak in-cylinder pressure becomes lower, the ignition delay of the main combustion is shortened, the NOXand soot emissions are reduced, but the HC and CO emissions are increased. With the increase of pilot injection fuel mass, the heat release rate of the pilot injection combustion and the maximum rate of pressure rise increase, NOXand HC emissions are higher, and PM and CO emissions are reduced. The pilot combustion flame is non-luminous.


Author(s):  
Georg Fink ◽  
Michael Jud ◽  
Thomas Sattelmayer

Natural gas as an alternative fuel in engine applications substantially reduces both pollutant and greenhouse gas emissions. High pressure dual fuel (HPDF) direct injection of natural gas and diesel pilot has the potential to minimize methane slip from gas engines and increase the fuel flexibility, while retaining the high efficiency of a diesel engine. Speed and load variations as well as various strategies for emission reduction entail a wide range of different operating conditions. The influence of these operating conditions on the ignition and combustion process is investigated on a rapid compression expansion machine (RCEM). By combining simultaneous shadowgraphy (SG) and OH* imaging with heat release rate analysis, an improved understanding of the ignition and combustion process is established. At high temperatures and pressures, the reduced pilot ignition delay and lift-off length minimize the effect of natural gas jet entrainment on pilot mixture formation. A simple geometrical constraint was found to reflect the susceptibility for misfiring. At the same time, natural gas ignition is delayed by the early pilot ignition close to the injector tip. The shape of heat release is only marginally affected by the operating conditions and mainly determined by the degree of premixing at the time of gas jet ignition. Luminescence from the sooting natural gas flame is generally only detected after the flame extends across the whole gas jet at peak heat release rate. Termination of gas injection at this time was confirmed to effectively suppress soot formation, while a strongly sooting pilot seems to intensify soot formation within the natural gas jet.


Author(s):  
Harmit Juneja ◽  
Leon A. LaPointe ◽  
Francois Ntone ◽  
Edward J. Lyford-Pike ◽  
Xiao Qin

This paper covers the development and application of advanced combustion modeling tools to meet the stringent design objectives of heavy duty gaseous fueled industrial spark ignition engines. Extensive literature survey and validation work was conducted to identify the best available chemical mechanism to represent natural gas and its variations. Mechanism reduction using the Simulation Error Minimization (SEM) approach was undertaken to reduce the chemistry mechanism to a reasonable size for practical computational turn around times. Laminar flame speed (LFS) correlations were also developed using the identified chemistry mechanism. These fundamental elements were then integrated into a level set method (G-equation) based combustion model to predict heat release rate, exhaust gas composition, and the onset and intensity of autoignition (knock). The developed combustion modeling tools can handle lean or stoichiometric operation, presence of high levels of EGR, and variations in natural gas fuel composition. Detailed experimental data was available in the form of a spark timing sweep covering a non-knocking to a highly knocking operating condition for different fuel compositions. The intake flow modeling process was validated with available flow rig data at different valve lifts. Accurate modeling of the intake and compression process generates precise initial conditions for combustion modeling. Results are shown for conventional natural gas, natural gas containing 9% propane by mass, and natural gas containing 12% hydrogen mass fraction, at stoichiometric operating conditions. Excellent agreement with the measured data was observed in predicting heat release rate and the onset and intensity of knock for these different fuel compositions. The modeling tools developed in this study offer a robust methodology to design and optimize combustion systems for heavy duty gaseous fueled industrial spark ignition engines.


Author(s):  
Georg Fink ◽  
Michael Jud ◽  
Thomas Sattelmayer

Natural gas as an alternative fuel in engine applications substantially reduces both pollutant and greenhouse gas emissions. High pressure dual fuel direct injection of natural gas and Diesel pilot has the potential to minimize methane slip from gas engines and increase the fuel flexibility, while retaining the high efficiency of a Diesel engine. Speed and load variations as well as various strategies for emission reduction entail a wide range of different operating conditions. The influence of these operating conditions on the ignition and combustion process is investigated on a rapid compression expansion machine. By combining simultaneous Shadowgraphy and OH* imaging with heat release rate analysis, an improved understanding of the ignition and combustion process is established. At high temperatures and pressures the reduced pilot ignition delay and lift-off length minimize the effect of natural gas jet entrainment on pilot mixture formation. A simple geometrical constraint was found to reflect the susceptibility for misfiring. At the same time natural gas ignition is delayed by the early pilot ignition close to the injector tip. The shape of heat release is only marginally affected by the operating conditions and mainly determined by the degree of premixing at the time of gas jet ignition. Luminescence from the sooting natural gas flame is generally only detected after the flame extends across the whole gas jet at peak heat release rate. Termination of gas injection at this time was confirmed to effectively suppress soot formation, while a strongly sooting pilot seems to intensify soot formation within the natural gas jet.


Fuel ◽  
2021 ◽  
Vol 288 ◽  
pp. 119656
Author(s):  
Robbert Willems ◽  
Frank Willems ◽  
Niels Deen ◽  
Bart Somers

Author(s):  
Shuonan Xu ◽  
David Anderson ◽  
Mark Hoffman ◽  
Robert Prucka ◽  
Zoran Filipi

Energy security concerns and an abundant supply of natural gas in the USA provide the impetus for engine designers to consider alternative gaseous fuels in the existing engines. The dual-fuel natural-gas diesel engine concept is attractive because of the minimal design changes, the ability to preserve a high compression ratio of the baseline diesel, and the lack of range anxiety. However, the increased complexity of a dual-fuel engine poses challenges, including the knock limit at a high load, the combustion instability at a low load, and the transient response of an engine with directly injected diesel fuel and port fuel injection of compressed natural gas upstream of the intake manifold. Predictive simulations of the complete engine system are an invaluable tool for investigations of these conditions and development of dual-fuel control strategies. This paper presents the development of a phenomenological combustion model of a heavy-duty dual-fuel engine, aided by insights from experimental data. Heat release analysis is carried out first, using the cylinder pressure data acquired with both diesel-only and dual-fuel (diesel and natural gas) combustion over a wide operating range. A diesel injection timing correlation based on the injector solenoid valve pulse widths is developed, enabling the diesel fuel start of injection to be detected without extra sensors on the fuel injection cam. The experimental heat release trends are obtained with a hybrid triple-Wiebe function for both diesel-only operation and dual-fuel operation. The ignition delay period of dual-fuel operation is examined and estimated with a predictive correlation using the concept of a pseudo-diesel equivalence ratio. A four-stage combustion mechanism is discussed, and it is shown that a triple-Wiebe function has the ability to represent all stages of dual-fuel combustion. This creates a critical building block for modeling a heavy-duty dual-fuel turbocharged engine system.


Sign in / Sign up

Export Citation Format

Share Document