scholarly journals Above and beyond Short-Term Mating, Long-Term Mating is Uniquely Tied to Human Personality

2013 ◽  
Vol 11 (5) ◽  
pp. 147470491301100 ◽  
Author(s):  
Nicholas S. Holtzman ◽  
Michael J. Strube

To what extent are personality traits and sexual strategies linked? The literature does not provide a clear answer, as it is based on the Sociosexuality model, a one-dimensional model that fails to measure long-term mating (LTM). An improved two-dimensional model separately assesses long-term and short-term mating (STM; Jackson and Kirkpatrick, 2007 ). In this paper, we link this two-dimensional model to an array of personality traits (Big 5, Dark Triad, and Schizoid Personality). We collected data from different sources (targets and peers; Study 1), and from different nations (United States, Study 1; India, Study 2). We demonstrate for the first time that, above and beyond STM, LTM captures variation in personality.

Genetics ◽  
1990 ◽  
Vol 126 (1) ◽  
pp. 249-260 ◽  
Author(s):  
M Slatkin ◽  
W P Maddison

Abstract We introduce a method for analyzing phylogenies of genes sampled from a geographically structured population. A parsimony method can be used to compute s, the minimum number of migration events between pairs of populations sampled, and the value of s can be used to estimate the effective migration rate M, the value of Nm in an island model with local populations of size N and a migration rate m that would yield the same value of s. Extensive simulations show that there is a simple relationship between M and the geographic distance between pairs of samples in one- and two-dimensional models of isolation by distance. Both stepping-stone and lattice models were simulated. If two demes k steps apart are sampled, then, s, the average value of s, is a function only of k/(Nm) in a one-dimensional model and is a function only of k/(Nm)2 in a two-dimensional model. Furthermore, log(M) is approximately a linear function of log(k). In a one-dimensional model, the regression coefficient is approximately -1 and in a two-dimensional model the regression coefficient is approximately -0.5. Using data from several locations, the regression of log(M) on log(distance) may indicate whether there is isolation by distance in a population at equilibrium and may allow an estimate of the effective migration rate between adjacent sampling locations. Alternative methods for analyzing DNA sequence data from a geographically structured population are discussed. An application of our method to the data of R. L. Cann, M. Stoneking and A. C. Wilson on human mitochondrial DNA is presented.


1998 ◽  
Vol 65 (1) ◽  
pp. 171-177 ◽  
Author(s):  
S. Mu¨ftu¨ ◽  
T. S. Lewis ◽  
K. A. Cole ◽  
R. C. Benson

A theoretical analysis of the fluid mechanics of the air cushion of the air reversers used in web-handling systems is presented. A two-dimensional model of the air flow is derived by averaging the equations of conservation of mass and momentum over the clearance between the web and the reverser. The resulting equations are Euler’s equations with nonlinear source terms representing the air supply holes in the surface of the reverser. The equations are solved analytically for the one-dimensional case and numerically for the two-dimensional case. Results are compared with an empirical formula and the one-dimensional airjet theory developed for hovercraft. Conditions that maximize the air pressure supporting the web are analyzed and design guidelines are deduced.


Author(s):  
Dehao Liu ◽  
Gang Wang ◽  
Zhenguo Nie ◽  
Yiming (Kevin) Rong

For predicting of diffusive phase transformations during the austenitizing process in hypoeutectoid Fe-C steels, a two-dimensional model has been developed. The diffusion equations are solved within each phase (α and γ) using an explicit finite volume technique formulated using a square grid. The discrete α/γ interface is represented by special volume elements α/γ. The result showing the dissolution of ferrite particles in the austenite matrix are presented at different stages of the phase transformation. Specifically, the influence of the microstructure scale and heating rate on the transformation kinetics has been investigated. Final austenitization temperature calculated with this 2D model is compared with predictions of a simpler one dimensional (1D) front-tracking calculation.


2008 ◽  
Author(s):  
Robert L. McMasters

The laser flash method for measuring thermal diffusivity is well established and has been in use for many years. Early analysis methods employed a simple model, in which one dimensional transient conduction was assumed, with insulated surfaces during the time subsequent to the flash. More recently, models of grater sophistication have been applied to flash diffusivity experiments. These models have been matched to experimental data using nonlinear regression and assume one-dimensional conduction. The advanced models have achieved highly accurate agreement with experimental data taken from thin samples, on the order of one millimeter in thickness. As samples become thicker, models which neglect edge losses can lose some conformity to the experimental data. The present research involves the application of a two dimensional model which allows for penetration of the laser flash into the sample. The accommodation of the flash penetration is important for porous materials, where the coarseness of the porosity is more than one percent of the sample thickness. Variability of the area of incidence of the flash is also investigated to determine the effect on the model and the results. Statistical methods are used in order to make a determination as to the validity of the two dimensional model, as compared with the one dimensional analysis method.


2016 ◽  
Vol 9 ◽  
pp. ASWR.S36089 ◽  
Author(s):  
Ahmad ShahiriParsa ◽  
Mohammad Noori ◽  
Mohammad Heydari ◽  
Mahmood Rashidi

River flooding causes several human and financial casualties. It is necessary to perform research studies and implement subsequent actions consistent with the nature of the river. In order to reduce flood damage, floodplain zoning maps and river cross-sectional boundaries are important to nonstructural measures in planning and optimizing utilization of the areas around the river. Due to the complex behavior of the rivers during floods, computer modeling is the most efficient tool with the least possible cost to study and simulate the behavior of the rivers. In this study, one-dimensional model Hydrologic Engineering Centers–-River Analysis System and two-dimensional model CCHE2D were used to simulate the flood zoning in the Sungai Maka district in Kelantan state, Malaysia. The results of these two models in most sections approximately match. Most differences in the results were in the shape of the river.


Sign in / Sign up

Export Citation Format

Share Document