Overview of alternative fuels with emphasis on the potential of liquefied natural gas as future marine fuel

Author(s):  
Mohamed M Elgohary ◽  
Ibrahim S Seddiek ◽  
Ahmed M Salem
2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Kian-Guan Lim ◽  
Michelle Lim

AbstractThe technology to liquefy natural gas for transport to countries worldwide and the increasing use of natural gas as a cleaner fossil fuel for industry and household meant that the supply of liquified natural gas (LNG) worldwide is a profitable trend. Shipping companies can strategically choose to diversify into LNG fleet to grasp this trend. By supplying more LNG shipping capacities, the greater availability of LNG worldwide, as a source of marine fuel and as a source of cleaner energy in replacing coal and oil, is supporting eco-innovation. In this paper, we investigate three economic and financial benefits to a shipping firm that diversified into liquefied natural gas (LNG) shipping, namely firm profitability performance, firm efficiency, and stock return performance. We also investigate if there is an early mover advantage in doing so. Our empirical findings indicate that fleet diversification into LNG carriers resulted in higher profitability and better operational efficiency. For the listed shipping firms, their stock returns increased with diversified exposures to the LNG business. There is some evidence of higher profitability in the early mover advantage. Firms that originated in LNG business also benefited when there was diversification into the non-LNG business.


Author(s):  
Xinglin Yang ◽  
Zongming Yang ◽  
Huabing Wen ◽  
Viktor Gorbov ◽  
Vira Mitienkova ◽  
...  

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Mark Philip Cassar ◽  
Dimitrios Dalaklis ◽  
Fabio Ballini ◽  
Seyedvahid Vakili

With water covering almost three-quarters of the Earth’s surface and by factoring in that the maritime transport industry is holding the comparative advantage in relation to all other means, activities associated with the seas and oceans of our planet are extremely vital for the normal functioning of global trade. Furthermore, evaluating the opportunities of the so-called “Blue Economy” and possibilities for further growth should be at the epicentre of future development plans. Indicative examples -apart from various endeavours of maritime transport- include other sectors, like shipbuilding and repairs, fishing activities and related processes, as well as oil and gas exploration. All these provide significant economic output and facilitate job creation. It is true that the shipping industry contributes to the carriage of vast quantities of cargo and maintains a crucial role in global trade; however, the specific industry is also responsible for significant quantities of greenhouse gas (GHG) emissions. IMO (MEPC) in 2018 adopted an initial strategy on the reduction of GHG emissions from ships. This plan envisages a reduction of CO2 emissions per transport work, at least 40% by 2030, pursuing efforts towards even further reduction by 2050, compared to the 2008 levels. It is imperative for shipping and related industries to investigate and introduce more environmentally friendly (“cleaner”) ways of operation. In the search for these cleaner fuels, it is the responsibility of maritime stakeholders to make available (economically viable) fuel alternatives worldwide. In view of an increasing trend in using Liquefied Natural Gas (LNG) as a marine fuel, setting up regulations and amend national legislation to allow the provision of LNG as a ship fuel in a safe manner, is a first stage which potential service providing countries have to successfully fulfil. The current analysis is focusing on the small island state of Malta, which apart from certain international aspects introduced by the International Maritime Organisation (IMO), it has to abide by European Union’s (EU) regulations and make LNG as a marine fuel available until 2025. Its main aim is to provide ways to cover the identified regulatory gap of the Maltese legislation, relating to ports, ship fuel bunkering and the local gas market.


Author(s):  
Par Neiburger

Liberator Engine Company, LLC designs, develops and produces alternative fuel engines for vehicles around the globe. The Company’s 6.0 Liter Liberator™ gaseous fuels engine will have the ability to operate on Compressed Natural Gas, Liquefied Natural Gas or Liquid Propane Gas: clean, domestic, economical fuels. The Liberator engine will target OEM on road vehicles, as well as off road applications. The Liberator engine is also an excellent choice for the repower of existing diesel vehicles. The 6.0L Liberator™ engine will serve as a replacement engine for vehicle currently operating on a Cummins 5.9L diesel engine or Mercedes diesel 6.0L engine. Paper published with permission.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5673
Author(s):  
Tomasz Banaszkiewicz ◽  
Maciej Chorowski ◽  
Wojciech Gizicki ◽  
Artur Jedrusyna ◽  
Jakub Kielar ◽  
...  

Liquefied natural gas (LNG) is one of the most influential fuels of the 21st century, especially in terms of the global economy. The demand for LNG is forecasted to reach 400 million tonnes by 2020, increasing up to 500 million tonnes in 2030. Due to its high mass and volumetric energy density, LNG is the perfect fuel for long-distance transport, as well as for use in mobile applications. It is also characterized by low levels of emissions, which is why it has been officially approved for use as a marine fuel in Emission Control Areas (ECAs) where stricter controls have been established to minimize the airborne emissions produced by ships. LNG is also an emerging fuel in heavy road and rail transport. As a cryogenic fuel that is characterized by a boiling temperature of about 120 K (−153 °C), LNG requires the special construction of cryogenic mobile installations to fulfill conflicting requirements, such as a robust mechanical construction and a low number of heat leaks to colder parts of the system under high safety standards. This paper provides a profound review of LNG applications in waterborne and land transport. Exemplary constructions of LNG engine supply systems are presented and discussed from the mechanical and thermodynamic points of view. Physical exergy recovery during LNG regasification is analyzed, and different methods of the process are both analytically and experimentally compared. The issues that surround two-phase flows and phase change processes in LNG regasification and recondensation are addressed, and technical solutions for boil-off gas recondensation are proposed. The paper also looks at the problems surrounding LNG installation data acquisition and control systems, concluding with a discussion of the impact of LNG technologies on future trends in low-emission transport.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8502
Author(s):  
Li Chin Law ◽  
Beatrice Foscoli ◽  
Epaminondas Mastorakos ◽  
Stephen Evans

Decarbonization of the shipping sector is inevitable and can be made by transitioning into low- or zero-carbon marine fuels. This paper reviews 22 potential pathways, including conventional Heavy Fuel Oil (HFO) marine fuel as a reference case, “blue” alternative fuel produced from natural gas, and “green” fuels produced from biomass and solar energy. Carbon capture technology (CCS) is installed for fossil fuels (HFO and liquefied natural gas (LNG)). The pathways are compared in terms of quantifiable parameters including (i) fuel mass, (ii) fuel volume, (iii) life cycle (Well-To-Wake—WTW) energy intensity, (iv) WTW cost, (v) WTW greenhouse gas (GHG) emission, and (vi) non-GHG emissions, estimated from the literature and ASPEN HYSYS modelling. From an energy perspective, renewable electricity with battery technology is the most efficient route, albeit still impractical for long-distance shipping due to the low energy density of today’s batteries. The next best is fossil fuels with CCS (assuming 90% removal efficiency), which also happens to be the lowest cost solution, although the long-term storage and utilization of CO2 are still unresolved. Biofuels offer a good compromise in terms of cost, availability, and technology readiness level (TRL); however, the non-GHG emissions are not eliminated. Hydrogen and ammonia are among the worst in terms of overall energy and cost needed and may also need NOx clean-up measures. Methanol from LNG needs CCS for decarbonization, while methanol from biomass does not, and also seems to be a good candidate in terms of energy, financial cost, and TRL. The present analysis consistently compares the various options and is useful for stakeholders involved in shipping decarbonization.


2019 ◽  
Vol 26 (1) ◽  
pp. 147-158
Author(s):  
Beatriz Molina Serrano ◽  
Nicoleta González Cancelas ◽  
Francisco Soler Flores

Abstract Pollution adjacent to the continent's shores has increased in the last decades, so it has been necessary to establish an energy policy to improve environmental conditions. One of the proposed solution was the search of alternative fuels to the commonly used in Short Sea Shipping to reduce pollution levels in Europe. Studies and researches show that liquefied natural gas could meet the European Union environmental requirements. Even environmental benefits are important; currently there is not significant number of vessels using it as fuel. Moreover, main target of this article is exposing result of a research in which a methodology to establish the most relevant variables in the decision to implement liquefied natural gas in Short Sea Shipping has been development using data mining. A Bayesian network was constructed because this kind of network allows to get graphically the relationships between variables and to determine posteriori values that quantify their contributions to decision-making. Bayesian model has been done using data from some European countries (European Union, Norway and Iceland) and database was generated by 35 variables classified in 5 categories. Main obtained conclusion in this analysis is that variables of transport and international trade and economy and finance are the most relevant in the decision-making process when implementing liquefied natural gas. Even more, it can be stablish that capacity of liquefied natural gas regasification terminals under construction and modal distribution of water cargo transportation continental as the most decisive variables because they are the root nodes in the obtained network.


Sign in / Sign up

Export Citation Format

Share Document