Multi-field coupling prediction for improving aeroacoustic performance of muffler based on LES and FW-H acoustic analogy methods

2021 ◽  
pp. 1475472X2110054
Author(s):  
H Guo ◽  
YS Wang ◽  
F Zhu ◽  
NN Liu ◽  
C Yang

Based on the large eddy simulation (LES) and Ffowcs Williams and Hawkings (FW-H) equation, a multi-field coupling method is presented for aeroacoustic prediction of a muffler with high-speed and high-temperature exhaust gasflow. A three-dimensional finite-volume model of the muffler is established by using the LES and FW-H acoustic analogy (FW-H-AA) methods. Experimental validations of the simulated results suggest a good accuracy of the combined LES and FW-H-AA approach. Some factors influencing on noise attenuation, such as the gasflow velocity, temperature and the structural parameters of the muffler are analyzed. The results show that the aerodynamic noise and turbulent kinetic energy (TKE) are mainly attributed to the structural mutations in the muffler. The outlet sound pressure level (SPL) increases with the inlet gasflow velocity and decreases with temperature. According to the factor analysis results, the target muffler is modified by adding a fillet transition to the end of inserted tube and redesigning the structures where the TKE concentrated for improving the aerodynamic performance. In terms of the outlet SPL, the inner TKE and the backpressure of the muffler, the modified muffler is significantly improved by the maximum reductions of 3-5dB in SPL, 10–20% in TKE and 0.5–2.5 kPa in backpressure. The presented method might be extended to other kinds of muffler for aeroacoustic calculation and improvement design.

2021 ◽  
Vol 20 (1-2) ◽  
pp. 157-173
Author(s):  
Zhengyu Zheng

In this paper, the DBEM/Hybrid LES(Directly Boundary Element Method/Hybrid Large Eddy Simulation)technique is applied to predict the aerodynamic noise generated by tandem circular cylinders immersed in a three-dimensional turbulent flow. Utilizing the Lighthill's Acoustic Analogy, the flow pressure fluctuation near the surface of the cylinder is converted into acoustic dipole sources. Taking the dipole sound sources as the actual sound sources, the aeroacoustic field is simulated and analyzed by DBEM. The research shows that: The strong dipole sources are distributed in the collision zone of the downstream cylindrical surface, where the upstream cylinder's shedding vortex colliding to downstream cylinder surface. Both of the amplitude-frequency response and the phase-frequency response of dipole acoustic source are obtained, which is helpful for further research on aerodynamics noise interference and suppression. Good comparisons are obtained between numerical results and BART (Basic Aerodynamic Research Tunnel) experimental data published by NASA.


Author(s):  
Q Liu ◽  
D Qi ◽  
H Tang

Large eddy simulation is applied to solve the unsteady three-dimensional viscous flow in the whole impeller-volute configuration of a centrifugal fan. The results of the simulation are used to predict the impeller-volute interaction and to obtain the unsteady pressure, velocity, and vorticity fluctuations in the impeller and volute casing. The simulation at the design point is carried out with the wall-adapting local eddy-viscosity subgrid-scale model and a sliding mesh technique is applied to consider the impeller-volute interaction. The results show that a strongly unsteady flow field occurs in the impeller and volute casing of the fan, and the flow is characterized with obvious pressure and vorticity fluctuations, especially at the tongue and at the blade wake region. The large pressure fluctuation at the tongue and the large fluctuation of the blade wake vorticity appear as the blade wake is passing the tongue. Acoustic analogy and vortex sound theory are used to compute the radiated dipole and quadrupole sound fields, which are in good agreement with the experiment. The sound results show that the vortex sound theory is convenient for the broadband noise computation, and the dipole sound is much higher than the quadrupole sound. The dipoles, distributed over the volute tongue surface, are the dominant sound source of the fan.


2014 ◽  
Vol 1049-1050 ◽  
pp. 1022-1025
Author(s):  
Xiao Feng Zhang ◽  
You Gang Xiao ◽  
Liang Sun ◽  
Yu Shi

In order to reduce aerodynamic noise in high-speed train cab,the SEA model of cab is established. The fluctuation pressures from train head surface are calculated by large eddy simulation method. Using fluctuation pressure as excitation force, power flow caused by airflow among sub-systems of SEA model of cab is obtained. Two schemes are put forward to reduce the aerodynamic noise in cab, namely interior decoration modification and windowpane thickness increase. The results show that when a layer of splint with 0.01 m thickness, 0.5 loss factor is added to the original decoration in cab, the overall sound pressure level (SPL) at driver head location will reduce 1.23 dB(A). When the cab windowpane thickness is increased to 5 mm from 4 mm, the overall SPL at the driver head location will reduce 0.87 dB(A).


2012 ◽  
Vol 249-250 ◽  
pp. 646-651
Author(s):  
Xiao Yan Yang ◽  
You Gang Xiao ◽  
Yu Shi

With large eddy simulation(LES) and Lighthill-Curle acoustic theory, the aerodynamic noises radiated from pantograph insulators with rectangular, circular, elliptical section were calculated, and the optimal pantograph insulator shape was obtained. The results show that in the same model, the sound pressure level (SPL) spectrum at different monitoring points are basically the same, but the amplitude is different. In different models, the SPL spectrum are different. As for rectangular, circular, elliptical section insulators, the frequency with maximum SPL reduces gradually. For reducing aerodynamic noise, the elliptical section insulator is optimal, and the long elliptical axis should be consistent with air flow. The pantograph with bigger and less components is helpful to reduce the aerodynamic noise.


2013 ◽  
Vol 275-277 ◽  
pp. 2589-2594 ◽  
Author(s):  
Yu Xuan Zhang ◽  
Song Ping Wu

Using compute Unified device architecture (CUDA), a traditional computational fluid dynamics (CFD) program is paralleled and optimized based on graphic processing unit (GPU). The calculation process is divided into two parts as serial and parallel. Their main characteristics are analyzed and different optimization schemes are given. CPU (central processing unit) and GPU work respectively as flow control and high-speed parallel computation. Bandwidth between devices is applied effectively. Data transfer between devices is moderately improved to simplify algorithm. Finally, the method is verified by simulating a three-dimensional isotropic homogeneous turbulence flow field. The calculation uses large eddy simulation (LES) method with secondary filter and solves the three-dimensional N-S equations. The maximum grid number achieves 8,000,000 and takes 33 seconds each step. All calculations are using ordinary single desktop computer, optimized acceleration ratio can reach 9.


2012 ◽  
Vol 226-228 ◽  
pp. 500-504
Author(s):  
Xi Pei ◽  
Min Xu ◽  
Dong Guo

The generation of aerodynamic noise of aircraft in flight is due to dynamical system and aerodynamic .The response of aircraft subjected to High acoustic loads and aerodynamic loads can produce fatigue and damage. In this paper a new Aeroelastic- Acoustics which adds acoustic loads in aeroelastic is presented. The emphasis of the study is the discipline of displacement and load of the flexible structure under the unsteady aerodynamic, inertial, elastic and aero-acoustic. The CFD/CSD/CAA coupling is used to simulate rockets cabin. Sound generated by a rocker is predicted numerically from a Large Eddy simulation (LES) of unsteady flow field. The Lighthill acoustic analogy is used to model the propagation of sound. The structural response of rocket cabin was given. The boundary-layer transition on the pressure side of the cabin is visualized, by plotting to better illustrate the essential interaction between fluctuating pressure and structure.CFD/CSD/CAA coupling compute method is validated in low and middle frequency.


Author(s):  
Martin Wosnik ◽  
Qiao Qin ◽  
Damien T. Kawakami ◽  
Roger E. A. Arndt

A Large Eddy Simulation (LES) approach for cavitating flow, based on a virtual single-phase, fully compressible cavitation model which includes the effects of incondensable gas, has been shown to be capable of capturing the complex dynamical features of highly unsteady cavitating flows of two-dimensional hydrofoils. Here the LES results are compared to Time-Resolved Particle Image Velocimetry (TR-PIV) in the wake of a cavitating NACA 0015 hydrofoil, with particular attention to the predicted vortex shedding mechanisms. Despite some difficulty with obtaining vector fields from vortical clouds of vaporous-gaseous bubbles with cross-correlation techniques, the initial results seem promising in that they confirm the existence of a primary vortex pair (type A-B). In addition to TR-PIV, the cavitation cloud shedding was also documented with phase-locked, time-resolved photography and high speed volume-illuminated video, both with simultaneous imaging of side and plan views of the foil. All three experimental techniques confirm the need for fully three-dimensional simulations to properly describe the unsteady, three-dimensional cavitation cloud shedding mechanism.


2019 ◽  
Vol 9 (11) ◽  
pp. 2332 ◽  
Author(s):  
Yongfang Yao ◽  
Zhenxu Sun ◽  
Guowei Yang ◽  
Wen Liu ◽  
Prasert Prapamonthon

The high-speed-train pantograph is a complex structure that consists of different rod-shaped and rectangular surfaces. Flow phenomena around the pantograph are complicated and can cause a large proportion of aerodynamic noise, which is one of the main aerodynamic noise sources of a high-speed train. Therefore, better understanding of aerodynamic noise characteristics is needed. In this study, the large eddy simulation (LES) coupled with the acoustic finite element method (FEM) is applied to analyze aerodynamic noise characteristics of a high-speed train with a pantograph installed on different configurations of the roof base, i.e. flush and sunken surfaces. Numerical results are presented in terms of acoustic pressure spectra and distributions of aerodynamic noise in near-field and far-field regions under up- and down-pantograph as well as flushed and sunken pantograph base conditions. The results show that the pantograph with the sunken base configuration provides better aerodynamic noise performances when compared to that with the flush base configuration. The noise induced by the down-pantograph is higher than that by the up-pantograph under the same condition under the pantograph shape and opening direction selected in this paper. The results also indicate that, in general, the directivity of the noise induced by the down-pantograph with sunken base configuration is slighter than that with the flush configuration. However, for the up-pantograph, the directivity is close to each other in Y-Z or X-Z plane whether it is under flush or sunken roof base condition. However, the sunken installation is still conducive to the noise environment on both sides of the track.


Sign in / Sign up

Export Citation Format

Share Document