Rotor health monitoring combining spin tests and data-driven anomaly detection methods

2011 ◽  
Vol 11 (1) ◽  
pp. 3-12 ◽  
Author(s):  
Ali Abdul-Aziz ◽  
Mark R Woike ◽  
Nikunj C Oza ◽  
Bryan L Matthews ◽  
John D lekki
2018 ◽  
Vol 90 (2) ◽  
pp. 435-451 ◽  
Author(s):  
Xu Kang ◽  
Dechang Pi

Purpose The purpose of this paper is to detect the occurrence of anomaly and fault in a spacecraft, investigate various tendencies of telemetry parameters and evaluate the operation state of the spacecraft to monitor the health of the spacecraft. Design/methodology/approach This paper proposes a data-driven method (empirical mode decomposition-sample entropy-principal component analysis [EMD-SE-PCA]) for monitoring the health of the spacecraft, where EMD is used to decompose telemetry data and obtain the trend items, SE is utilised to calculate the sample entropies of trend items and extract the characteristic data and squared prediction error and statistic contribution rate are analysed using PCA to monitor the health of the spacecraft. Findings Experimental results indicate that the EMD-SE-PCA method could detect characteristic parameters that appear abnormally before the anomaly or fault occurring, could provide an abnormal early warning time before anomaly or fault appearing and summarise the contribution of each parameter more accurately than other fault detection methods. Practical implications The proposed EMD-SE-PCA method has high level of accuracy and efficiency. It can be used in monitoring the health of a spacecraft, detecting the anomaly and fault, avoiding them timely and efficiently. Also, the EMD-SE-PCA method could be further applied for monitoring the health of other equipment (e.g. attitude control and orbit control system) in spacecraft and satellites. Originality/value The paper provides a data-driven method EMD-SE-PCA to be applied in the field of practical health monitoring, which could discover the occurrence of anomaly or fault timely and efficiently and is very useful for spacecraft health diagnosis.


Aerospace ◽  
2019 ◽  
Vol 6 (11) ◽  
pp. 117 ◽  
Author(s):  
Luis Basora ◽  
Xavier Olive ◽  
Thomas Dubot

Anomaly detection is an active area of research with numerous methods and applications. This survey reviews the state-of-the-art of data-driven anomaly detection techniques and their application to the aviation domain. After a brief introduction to the main traditional data-driven methods for anomaly detection, we review the recent advances in the area of neural networks, deep learning and temporal-logic based learning. In particular, we cover unsupervised techniques applicable to time series data because of their relevance to the aviation domain, where the lack of labeled data is the most usual case, and the nature of flight trajectories and sensor data is sequential, or temporal. The advantages and disadvantages of each method are presented in terms of computational efficiency and detection efficacy. The second part of the survey explores the application of anomaly detection techniques to aviation and their contributions to the improvement of the safety and performance of flight operations and aviation systems. As far as we know, some of the presented methods have not yet found an application in the aviation domain. We review applications ranging from the identification of significant operational events in air traffic operations to the prediction of potential aviation system failures for predictive maintenance.


Aerospace ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 103
Author(s):  
Luis Basora ◽  
Paloma Bry ◽  
Xavier Olive ◽  
Floris Freeman

Predictive maintenance has received considerable attention in the aviation industry where costs, system availability and reliability are major concerns. In spite of recent advances, effective health monitoring and prognostics for the scheduling of condition-based maintenance operations is still very challenging. The increasing availability of maintenance and operational data along with recent progress made in machine learning has boosted the development of data-driven prognostics and health management (PHM) models. In this paper, we describe the data workflow in place at an airline for the maintenance of an aircraft system and highlight the difficulties related to a proper labelling of the health status of such systems, resulting in a poor suitability of supervised learning techniques. We focus on investigating the feasibility and the potential of semi-supervised anomaly detection methods for the health monitoring of a real aircraft system. Proposed methods are evaluated on large volumes of real sensor data from a cooling unit system on a modern wide body aircraft from a major European airline. For the sake of confidentiality, data has been anonymized and only few technical and operational details about the system had been made available. We trained several deep neural network autoencoder architectures on nominal data and used the anomaly scores to calculate a health indicator. Results suggest that high anomaly scores are correlated with identified failures in the maintenance logs. Also, some situations see an increase in the anomaly score for several flights prior to the system’s failure, which paves a natural way for early fault identification.


Author(s):  
Luis Basora ◽  
Xavier Olive ◽  
Thomas Dubot

Anomaly detection is an active area of research with numerous methods and applications. This survey reviews the state-of-the-art of data-driven anomaly detection techniques and their application to the the aviation domain. After a brief introduction to the main traditional data-driven methods for anomaly detection, we review the recent advances in the area of neural networks, deep learning and temporal-logic based learning. We cover especially unsupervised techniques applicable to time series data because of their relevance to the aviation domain, where the lack of labeled data is the most usual case, and the nature of flight trajectories and sensor data is sequential, or temporal. The advantages and disadvantages of each method are presented in terms of computational efficiency and detection efficacy. The second part of the survey explores the application of anomaly detection techniques to aviation and their contributions to the improvement of the safety and performance of flight operations and aviation systems. As far as we know, some of the presented methods have not yet found an application in the aviation domain. We review applications ranging from the identification of significant operational events in air traffic operations to the prediction of potential aviation system failures for predictive maintenance.


2018 ◽  
Vol 10 (1) ◽  
Author(s):  
Fangzhou Sun ◽  
Abhishek Dubey ◽  
Chetan S. Kulkarni ◽  
Nagbhushan Mahadevan ◽  
Ali Guarneros Luna

In the next coming years, the International Space Station (ISS) plans to launch several small-sat missions powered by lithium-ion battery packs. An extended version of such mission requires dependable, energy dense, and durable power sources as well as system health monitoring. Hence a good health estimation framework to increase mission success is absolutely necessary as the devices are subjected to high demand operating conditions. This paper describes a hierarchical architecture which combines data-driven anomaly detection methods with a fine-grained model-based diagnosis and prognostics architecture. At the core of the architecture is a distributed stack of deep neural network that detects and classifies the data traces from nearby satellites based on prior observations. Any identified anomaly is transmitted to the ground, which then uses model-based diagnosis and prognosis framework to make health state estimation. In parallel, periodically the data traces from the satellites are transported to the ground and analyzed using model-based techniques. This data is then used to train the neural networks, which are run from ground systems and periodically updated. The collaborative architecture enables quick data-driven inference on the satellite and more intensive analysis on the ground where often time and power consumption are not constrained. The current work demonstrates implementation of this architecture through an initial battery data set. In the future we propose to apply this framework to other electric and electronic components on-board the small satellites.


Author(s):  
Samantha Corrado ◽  
Tejas Puranik ◽  
Olivia Pinon Fischer ◽  
Dimitri Mavris

As air traffic demand grows, robust, data-driven anomaly detection methods are required to ensure that aviation systems become safer and more efficient. The terminal airspace is identified as the most critical airspace for both individual flight-level and system-level safety and efficiency. As such, developing data-driven anomaly detection methods to analyze terminal airspace operations is paramount. With the expansion of ADS-B technology, open-source flight tracking data has become more readily available to enable larger-scale analyses of aircraft operations. This paper makes a distinction between spatial metrics in ADS-B trajectory data and energy metrics derived from ADS-B trajectory data. Motivated by the limited number of approaches that simultaneously consider both spatial and energy metrics, this paper introduces the concepts of spatial anomalies and energy anomalies. In particular, it proposes a novel, unified framework for detection of spatial and energy anomalies in ADS-B trajectory data (and associated derived metrics). The framework consists of three main parts - a data processing procedure, a spatial anomaly detection method, and an energy anomaly detection method. The framework is demonstrated utilizing four months of ADS-B trajectory data associated with arrivals at San Francisco International Airport, and the relationship between the spatial and energy anomalies in this terminal airspace is explored. The results that stem from the implementation of this framework indicate that if an aircraft is spatially not conforming to an identified set of air traffic flows representing standard spatial operations, then this aircraft is more likely to experience non-conformance to standard operations in its energy metrics. Aviation operators, such as air traffic controllers, may benefit from this observation, as it may factor into decision-making in instances where there is the potential to instruct an aircraft to spatially deviate from standard operations. Additionally, this research revealed underlying differences between trajectories that are spatially nominal yet energy-anomalous and those trajectories that are spatially anomalous and energy-anomalous. Focusing solely on energy anomaly detection does not provide insight into potential spatial-related decisions that may have been made to result in off-nominal energy behavior.


Author(s):  
Gunjan Saraogi ◽  
Deepa Gupta ◽  
Lavanya Sharma ◽  
Ajay Rana

Background: Backorders are an accepted abnormality affecting accumulation alternation and logistics, sales, chump service, and manufacturing, which generally leads to low sales and low chump satisfaction. A predictive archetypal can analyse which articles are best acceptable to acquaintance backorders giving the alignment advice and time to adjust, thereby demography accomplishes to aerate their profit. Objective: To address the issue of predicting backorders, this paper has proposed an un-supervised approach to backorder prediction using Deep Autoencoder. Method: In this paper, artificial intelligence paradigms are researched in order to introduce a predictive model for the present unbalanced data issues, where the number of products going on backorder is rare. Result: Un-supervised anomaly detection using deep auto encoders has shown better Area under the Receiver Operating Characteristic and precision-recall curves than supervised classification techniques employed with resampling techniques for imbalanced data problems. Conclusion: We demonstrated that Un-supervised anomaly detection methods specifically deep auto-encoders can be used to learn a good representation of the data. The method can be used as predictive model for inventory management and help to reduce bullwhip effect, raise customer satisfaction as well as improve operational management in the organization. This technology is expected to create the sentient supply chain of the future – able to feel, perceive and react to situations at an extraordinarily granular level


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4805
Author(s):  
Saad Abbasi ◽  
Mahmoud Famouri ◽  
Mohammad Javad Shafiee ◽  
Alexander Wong

Human operators often diagnose industrial machinery via anomalous sounds. Given the new advances in the field of machine learning, automated acoustic anomaly detection can lead to reliable maintenance of machinery. However, deep learning-driven anomaly detection methods often require an extensive amount of computational resources prohibiting their deployment in factories. Here we explore a machine-driven design exploration strategy to create OutlierNets, a family of highly compact deep convolutional autoencoder network architectures featuring as few as 686 parameters, model sizes as small as 2.7 KB, and as low as 2.8 million FLOPs, with a detection accuracy matching or exceeding published architectures with as many as 4 million parameters. The architectures are deployed on an Intel Core i5 as well as a ARM Cortex A72 to assess performance on hardware that is likely to be used in industry. Experimental results on the model’s latency show that the OutlierNet architectures can achieve as much as 30x lower latency than published networks.


Sign in / Sign up

Export Citation Format

Share Document