Enhanced mechanical properties of plasticized polylactic acid filament for fused deposition modelling: Effect of in situ heat treatment

2019 ◽  
Vol 36 (2) ◽  
pp. 131-142 ◽  
Author(s):  
MAF Rafie ◽  
KI Ku Marsilla ◽  
ZAA Hamid ◽  
A Rusli ◽  
MK Abdullah

The objective of this study is to characterize the effect of in situ heat treatment on polylactic acid (PLA) and plasticized PLA during fused deposition modelling (FDM) with the motivation to improve their mechanical, thermal and physical properties. The in situ heat treatment was formed during the FDM by adjusting the bed temperature to 70°C, 90°C and 120°C. The performance of 3D, the printed samples, was compared with the compression moulded samples treated at the same temperature using a vacuum oven. PLA was plasticized with poly (ethylene glycol) (PEG) at different compositions of 0, 5 and 10 wt% of PEG. The properties of PLA, plasticized PLA and FDM-printed sample were analysed using Instron, differential scanning calorimeter (DSC) and X-ray diffraction (XRD). It was found that the addition of PEG into PLA decreased the tensile strength, elongation at break and tensile modulus of the materials. However, after heat treatment in the vacuum oven and FDM, the properties were generally higher at 90°C and this was believed to be primarily due to the effect of crystallization. This can be proved by formation of double melting peak, correspond to melt-crystallization mechanism, observed in DSC. The formation of different crystal was supported by XRD analysis where the amorphous peak had transformed into sharp peak at 16.9° and 19.3°, which indicates an improved crystallinity. Comparison between the compression moulded sample and FDM demonstrated that the in situ heat treatment in FDM had the most significant impact on tensile modulus.

2021 ◽  
Vol 63 (1) ◽  
pp. 73-78
Author(s):  
Pulkin Gupta ◽  
Sudha Kumari ◽  
Abhishek Gupta ◽  
Ankit Kumar Sinha ◽  
Prashant Jindal

Abstract Fused deposition modelling (FDM) is a layer-by-layer manufacturing process type of 3D-printing (3DP). Significant variation in the mechanical properties of 3D printed specimens is observed because of varied process parameters and interfacial bonding between consecutive layers. This study investigates the influence of heat treatment on the mechanical strength of FDM 3D printed Polylactic acid (PLA) parts with constant 3DP parameters and ambient conditions. To meet the objectives, 7 sets, each containing 5 dog-bone shaped samples, were fabricated from commercially available PLA filament. Each set was subjected to heat treatment at a particular temperature for 1 h and cooled in the furnace itself, while one set was left un-treated. The temperature for heat treatment (Th) varied from 30 °C to 130 °C with increments of 10 °C. The heat-treated samples were characterized under tensile loading of 400 N and mechanical properties like Young’s modulus (E), Strain % ( ε ) and Stiffness (k) were evaluated. On comparing the mechanical properties of heat-treated samples to un-treated samples, significant improvements were observed. Heat treatment also altered the geometries of the samples. Mechanical properties improved by 4.88 % to 10.26 % with the maximum being at Th of 110 °C and below recrystallization temperature (Tr) of 65 °C. Deformations also decreased significantly at higher temperatures above 100 °C, by a maximum of 36.06 %. The dimensions of samples showed a maximum decrease of 1.08 % in Tr range and a maximum decrease of 0.31 % in weight at the same temperature. This study aims to benefit the society by establishing suitable Th to recover the lost strength in PLA based FDM 3D printed parts.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4317
Author(s):  
Thywill Cephas Dzogbewu ◽  
Willie Bouwer du Preez

TiAl-based intermetallic alloys have come to the fore as the preferred alloys for high-temperature applications. Conventional methods (casting, forging, sheet forming, extrusion, etc.) have been applied to produce TiAl intermetallic alloys. However, the inherent limitations of conventional methods do not permit the production of the TiAl alloys with intricate geometries. Additive manufacturing technologies such as electron beam melting (EBM) and laser powder bed fusion (LPBF), were used to produce TiAl alloys with complex geometries. EBM technology can produce crack-free TiAl components but lacks geometrical accuracy. LPBF technology has great geometrical precision that could be used to produce TiAl alloys with tailored complex geometries, but cannot produce crack-free TiAl components. To satisfy the current industrial requirement of producing crack-free TiAl alloys with tailored geometries, the paper proposes a new heating model for the LPBF manufacturing process. The model could maintain even temperature between the solidified and subsequent layers, reducing temperature gradients (residual stress), which could eliminate crack formation. The new conceptualized model also opens a window for in situ heat treatment of the built samples to obtain the desired TiAl (γ-phase) and Ti3Al (α2-phase) intermetallic phases for high-temperature operations. In situ heat treatment would also improve the homogeneity of the microstructure of LPBF manufactured samples.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mohammadreza Lalegani Dezaki ◽  
Mohd Khairol Anuar Mohd Ariffin ◽  
Saghi Hatami

Purpose The purpose of this paper is to review research studies on process optimisation and machine development that lead to the enhancement of final products in various aspects of the fused deposition modelling (FDM) process. Design/methodology/approach An overview of the literature, focussing on process parameters, machine developments and material characterisations. This study investigates recent research studies that studied FDM capabilities in printing a vast range of materials from thermoplastics to metal alloys. Findings FDM is one of the most common techniques in additive manufacturing (AM) processes. Many parameters in this technology have effects on three-dimensional printed products. Therefore, it is necessary to obtain the optimum elements, for example, build orientation, layer thickness, nozzle diameter, infill pattern and bed temperature. By selecting a proper variable range of parameters, the layers adhere strongly and building end-use products of high quality are achievable. A vast range of materials and their properties from polymers to composite-based polymers are presented. Novel techniques to print metal alloys and composites are examined to increase the productivity of the FDM process. Additionally, defects such as shrinkage and warpage are discussed to eliminate the system’s limitations and improve the quality of final products. Multi-axis and mobile machines brought enhancements throughout the process to eliminate obstacles such as staircase defects in the conventional FDM process. In brief, recent developments were identified and a summary of major improvements was discussed in this study for future research. Originality/value This paper is an overview that provides information about research and developments in FDM. This review focusses on process optimisation and obstacles in printing polymers, composites, geopolymers and novel materials. Therefore, machine characteristics were examined to find out the accessibility of printing novel materials for different applications.


Metals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 629
Author(s):  
Anagh Deshpande ◽  
Subrata Deb Nath ◽  
Sundar Atre ◽  
Keng Hsu

Selective laser melting (SLM) is one of the most widely used additive manufacturing technologies. Fabricating nickel-based superalloys with SLM has garnered significant interest from the industry and the research community alike due to the excellent high temperature properties and thermal stability exhibited by the alloys. Haynes-282 alloy, a γ′-phase strengthened Ni-based superalloy, has shown good high temperature mechanical properties comparable to alloys like R-41, Waspaloy, and 263 alloy but with better fabricability. A study and comparison of the effect of different heat-treatment routes on microstructure and mechanical property evolution of Haynes-282 fabricated with SLM is lacking in the literature. Hence, in this manuscript, a thorough investigation of microstructure and mechanical properties after a three-step heat treatment and hot isostatic pressing (HIP) has been conducted. In-situ heat-treatment experiments were conducted in a transmission electron microscopy (TEM) to study γ′ precipitate evolution. γ′ precipitation was found to start at 950 °C during in-situ heat-treatment. Insights from the in-situ heat-treatment were used to decide the aging heat-treatment for the alloy. The three-step heat-treatment was found to increase yield strength (YS) and ultimate tensile strength (UTS). HIP process enabled γ′ precipitation and recrystallization of grains of the as-printed samples in one single step.


2016 ◽  
Vol 491 (1) ◽  
pp. 134-142 ◽  
Author(s):  
Xiao-Kang Xie ◽  
Jia Yang ◽  
Xiao-Gang Lu ◽  
Jian-Ping Zhou ◽  
Ke-Xin Jin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document