Development of tri-layer knitted fabrics for shuttle badminton players

2017 ◽  
Vol 48 (4) ◽  
pp. 738-760 ◽  
Author(s):  
T Suganthi ◽  
P Senthilkumar

Thermo-physiological comfort of the fabric is attained through the ability of managing heat and transmission of sensible and insensible perspiration. An investigation on influence of tri-layer knitted structure on thermal comfort characteristics of layered knitted fabrics was carried out. Three tri-layer knitted structures were developed in which inner layer was made up of micro-fibre polyester and outer layer was made up of modal yarn. The yarn used in the middle layer was changed to either micro-fibre polyester or polyester or acrylic yarn. The thermal comfort characteristics such as thermal conductivity, air permeability, water vapour permeability, wicking, moisture absorbency, drying rate and moisture management properties have been analysed. Wear trial was conducted for shuttle badminton players and they were ranked using thermal environment subjective judgement scale. Tri-layer knitted structure with micro-fibre polyester in the inner and middle layer and modal in the outer layer showed better thermal comfort characteristics both by objective evaluation and wear trial method compared to polyester or acrylic in the middle layer and is preferable for shuttle badminton sportswear.

2017 ◽  
Vol 25 (0) ◽  
pp. 75-80 ◽  
Author(s):  
Thangamuthu Suganthi ◽  
Pandurangan Senthilkumar ◽  
Venugopal Dipika

The thermal comfort properties of different knitted fabric structures made from modal, polypropylene and micro denier polyester were studied for volleyball sportswear. Eleven knitted fabrics were produced, in which three samples were single jersey, two plated and six bi-layer knitted structures. The air permeability, water vapour permeability, thermal conductivity, wicking and drying ability of bi-layer knitted fabric made up of polypropylene as the inner layer and modal as the outer layer with one tuck point of repeat were found to be higher as compared to other bi-layer, plated and single jersey structures. Both theobjective and subjective results show that bi-layer knitted fabric with polypropylene as the inner layer and modal as the outer layer with one tuck point of repeat is mostly suitablefor sportswear. The results are discussed together with multivariate ANOVA test results ata 95% significance level.


2016 ◽  
Vol 28 (4) ◽  
pp. 420-428 ◽  
Author(s):  
Govindan Karthikeyan ◽  
Govind Nalankilli ◽  
O L Shanmugasundaram ◽  
Chidambaram Prakash

Purpose – The purpose of this paper is to present the thermal comfort properties of single jersey knitted fabric structures made from bamboo, tencel and bamboo-tencel blended yarns. Design/methodology/approach – Bamboo, tencel fibre and blends of the two fibres were spun into yarns of identical linear density (30s Ne). Each of the blended yarns so produced was converted to single jersey knitted fabrics with loose, medium and tight structures. Findings – An increase in tencel fibre in the fabric had led to a reduction in fabric thickness and GSM. Air permeability and water-vapour permeability also increased with increase in tencel fibre content. The anticipated increase in air permeability and relative water vapour permeability with increase in stitch length was observed. The thermal conductivity of the fabrics was generally found to increase with increase in the proportion of bamboo. Research limitations/implications – It is clear from the foregoing that, although a considerable amount of work has been done on bamboo blends and their properties, still there are many gaps existing in the literature, in particular, on thermal comfort, moisture management and spreading characteristics. Thus the manuscript addresses these issues and provides valuable information on the comfort characteristics of the blended fabrics for the first time. In the evolution of this manuscript, it became apparent that a considerable amount of work was needed to fill up the gaps existing in the literature and hence this work which deals with an investigation of the blend yarn properties and comfort properties of knitted fabrics was taken up. Originality/value – This research work is focused on the thermal comfort parameters of knitted fabrics made from 100 per cent tencel yarn, 100 per cent bamboo yarn and tencel/bamboo blended yarns of different blend ratios.


2015 ◽  
Vol 10 (1) ◽  
pp. 155892501501000 ◽  
Author(s):  
Nida Oğlakcioğlu ◽  
Ahmet Çay ◽  
Arzu Marmarali ◽  
Emel Mert

Engineered yarns are used to provide better clothing comfort for summer garments because of their high levels of moisture and water vapor management. The aim of this study was to investigate the characteristics of knitted structures that were produced using different types of polyester yarns in order to achieve better thermal comfort properties for summer clothing. However they are relatively expensive. Therefore, in this study engineered polyester yarns were combined with cotton and lyocell yarns by plying. This way, the pronounced characteristics of these yarns were added to the knitted structure as well. Channeled polyester, hollow polyester, channeled/hollow blended polyester, cotton, and lyocell yarns were plied with each other and themselves. Then, single jersey structures were knitted using these ply yarn combinations and air permeability, thermal resistance, thermal absorptivity, water vapor permeability, moisture management, and drying properties were tested. The results indicate that channeled PES fabrics are advantageous for hot climates and high physical activities with regards to high permeability and moisture transfer and also to fast drying properties. Besides, air permeability and thermal properties improved through the combination of lyocell yarn with engineered polyester yarns. However, the use of lyocell or cotton with engineered yarns resulted in a to a decrease in moisture management properties and an increase in drying times


2012 ◽  
Vol 627 ◽  
pp. 164-169 ◽  
Author(s):  
Salwa Tashkandi ◽  
Li Jing Wang ◽  
Sinnappoo Kanesalingam ◽  
Amit Jadhav

Fabric material plays an important role in the thermal comfort of Abaya because it is the outer garment of Muslim women. Abaya is black in colour and covers the whole body except the hands, feet and face. It is mandatory to wear Abaya in the Saudi Arabia and certain parts of Middle East countries irrespective of the outside environmental temperature which could be up to 45°C. Therefore, the thermal transmission characteristics of the abaya are extremely important as human body responds to the external thermal environment through clothing. In a hot environment, it is extremely uncomfortable to wear several layers of clothing under the Abaya. Hence it is essential to enhance the thermal comfort of fabrics used for Abaya. This study investigated five selected knitted fabrics that could be used as Abaya fabrics for thermal resistance, air permeability, thermal comfort and vapour resistance. The results indicated that the fabrics with different knit structures, fibre composition and fabric weight have greater influence on thermal comfort performance.


2014 ◽  
Vol 14 (3) ◽  
pp. 174-178 ◽  
Author(s):  
Viera Glombikova ◽  
Petra Komarkova

Abstract This study evaluates the efficiency of non-flammable functional underwear used as a secondary heat barrier in extreme conditions. Five groups of knitted fabrics were analysed for flame resistance and selected physiological properties (water vapour permeability, air permeability, thermal resistance and liquid moisture transport by moisture management transport). The results indicated similar levels of flame resistance for the materials tested but show important differences in terms of physiological characteristics, namely liquid moisture transport, which influences the safety and comfort of protective clothing.


2011 ◽  
Vol 42 (1) ◽  
pp. 19-33 ◽  
Author(s):  
MB Sampath ◽  
Anton Aruputharaj ◽  
Mani Senthilkumar ◽  
G Nalankilli

2019 ◽  
Vol 50 (5) ◽  
pp. 716-739 ◽  
Author(s):  
Laimutė Stygienė ◽  
Sandra Varnaitė-Žuravliova ◽  
Aušra Abraitienė ◽  
Sigitas Krauledas ◽  
Julija Baltušnikaitė-Guzaitienė ◽  
...  

To ensure the thermal comfort during high physical activity, clothes must have good thermoregulation properties. Textiles containing ceramic additives, which are able to absorb and emit back the thermal energy from the human body, can be used to improve the thermal properties of the fabric. The aim of the research was to investigate the thermal and moisture management properties of different, three-layer knitted fabrics containing fibers impregnated with infrared-emitting ceramic particles. The thermal efficiency of the manufactured knits was characterised by the dynamics of accumulated/released heat generated by infrared rays and expressed as achieved steady-state surface temperature while and after the heating. Thermal resistance and liquid moisture management properties were investigated during the research as well. The elemental analysis of different pure bio-ceramic additives in yarns, used for development of knitted fabrics, was determined by X-ray fluorescence spectroscopy analysis. It was determined that heat accumulation is directly related to the calculated quantity of bio-ceramic additives in the knits. The obvious correlation between accumulated/released heat, thermal resistance, and the quantity of bio-ceramic additives in all investigated knitted structures was also investigated. Taking into account all the results obtained during the study of the thermoregulation properties, the optimal knitted structure, which could be comfortable for wearing next to the skin in cold weather, was selected.


2015 ◽  
Vol 1134 ◽  
pp. 225-230 ◽  
Author(s):  
Nadhirah Mohd Amran ◽  
Mohd Rozi Ahmad ◽  
Mohamad Faizul Yahya ◽  
Amily Fikry ◽  
Ahmad Munir Che Muhamed ◽  
...  

This paper reports on the moisture management properties of fabrics made from yarns of 100% cotton, 100% bamboo and combination of bamboo and cotton yarns. The fabrics were knitted on a circular knitting machine and scoured before measuring them for moisture management capability, air permeability and water vapour permeability. The results showed that all fabrics have good overall moisture management capability which classified them as water penetration fabric with small spreading area. The fabric consisting of the combination of bamboo and cotton yarns of 83/17 ratio gave the highest air and water vapour permeability.


2021 ◽  
Vol 72 (03) ◽  
pp. 244-249
Author(s):  
AMANY HALIL ◽  
PAVLA TĚŠINOVÁ ◽  
ABDELHAMID R.R. ABOALASAAD

Knitted fabrics are characterized by comfort compared to woven fabrics due to their high extensibility and airpermeability, but they have lower dimensional stability after repeated washing especially single jersey knitted fabric(SJKF). Therefore, the spandex (Lycra) core-spun yarns are used to maintain the dimensions of knitted fabrics duringuse and after repeated stresses. In this study, nine elastic SJKF samples were produced at three levels of loop lengthand spandex percent using yarn linear density 30/1 Ne. For comparison, three 100% cotton knitted samples wereproduced with the same levels of loop length and yarn count. The dimensional and thermal comfort properties of thelong-stretch samples were compared with the short-stretch cotton knitted fabric. The thermal comfort properties (thermalconductivity, resistance, absorptivity, and water vapour permeability), air permeability, and dimensional properties weremeasured and compared to 100% cotton samples. The results showed that the stitch density, fabric density, fabricthickness, and thermal resistance increased, whereas the air, water vapour permeability, and spirality angle decreasedin cotton/spandex samples.


2017 ◽  
Vol 25 (0) ◽  
pp. 53-57 ◽  
Author(s):  
Karunakaran Kadapalayam Chinnasamy ◽  
Prakash Chidambaram

The main aim was to find out the influence of the blend ratio and linear density on the thermal comfort properties of regenerated bamboo cotton blended single jersey knitted fabrics. An increase in the regenerated bamboo fibre ratio in the fabric influences the thermal comfort properties. Knitted fabrics prepared from regenerated bamboo blended yarns have lesser thickness and inferior mass per square meter than cotton fabrics. The proportion of regenerated bamboo fibre increases in the yarn as the value of thermal conductivity decreases in knitted fabrics. Water vapour permeability and air permeability confirm a similar increase as the proportion of regenerated bamboo fibre increases. 100% regenerated bamboo fabrics have superior air permeability values compared with regenerated bamboo/cotton blended fabrics. The statistical investigation also showed that the results are significant for the thermal comfort properties of regenerated bamboo cotton knitted fabrics.


Sign in / Sign up

Export Citation Format

Share Document