Analysis of thermal comfort characteristics of moisture management finished knitted fabrics made from different yarns

2011 ◽  
Vol 42 (1) ◽  
pp. 19-33 ◽  
Author(s):  
MB Sampath ◽  
Anton Aruputharaj ◽  
Mani Senthilkumar ◽  
G Nalankilli
2017 ◽  
Vol 48 (4) ◽  
pp. 738-760 ◽  
Author(s):  
T Suganthi ◽  
P Senthilkumar

Thermo-physiological comfort of the fabric is attained through the ability of managing heat and transmission of sensible and insensible perspiration. An investigation on influence of tri-layer knitted structure on thermal comfort characteristics of layered knitted fabrics was carried out. Three tri-layer knitted structures were developed in which inner layer was made up of micro-fibre polyester and outer layer was made up of modal yarn. The yarn used in the middle layer was changed to either micro-fibre polyester or polyester or acrylic yarn. The thermal comfort characteristics such as thermal conductivity, air permeability, water vapour permeability, wicking, moisture absorbency, drying rate and moisture management properties have been analysed. Wear trial was conducted for shuttle badminton players and they were ranked using thermal environment subjective judgement scale. Tri-layer knitted structure with micro-fibre polyester in the inner and middle layer and modal in the outer layer showed better thermal comfort characteristics both by objective evaluation and wear trial method compared to polyester or acrylic in the middle layer and is preferable for shuttle badminton sportswear.


2016 ◽  
Vol 28 (4) ◽  
pp. 420-428 ◽  
Author(s):  
Govindan Karthikeyan ◽  
Govind Nalankilli ◽  
O L Shanmugasundaram ◽  
Chidambaram Prakash

Purpose – The purpose of this paper is to present the thermal comfort properties of single jersey knitted fabric structures made from bamboo, tencel and bamboo-tencel blended yarns. Design/methodology/approach – Bamboo, tencel fibre and blends of the two fibres were spun into yarns of identical linear density (30s Ne). Each of the blended yarns so produced was converted to single jersey knitted fabrics with loose, medium and tight structures. Findings – An increase in tencel fibre in the fabric had led to a reduction in fabric thickness and GSM. Air permeability and water-vapour permeability also increased with increase in tencel fibre content. The anticipated increase in air permeability and relative water vapour permeability with increase in stitch length was observed. The thermal conductivity of the fabrics was generally found to increase with increase in the proportion of bamboo. Research limitations/implications – It is clear from the foregoing that, although a considerable amount of work has been done on bamboo blends and their properties, still there are many gaps existing in the literature, in particular, on thermal comfort, moisture management and spreading characteristics. Thus the manuscript addresses these issues and provides valuable information on the comfort characteristics of the blended fabrics for the first time. In the evolution of this manuscript, it became apparent that a considerable amount of work was needed to fill up the gaps existing in the literature and hence this work which deals with an investigation of the blend yarn properties and comfort properties of knitted fabrics was taken up. Originality/value – This research work is focused on the thermal comfort parameters of knitted fabrics made from 100 per cent tencel yarn, 100 per cent bamboo yarn and tencel/bamboo blended yarns of different blend ratios.


2020 ◽  
Vol 91 (1-2) ◽  
pp. 3-17
Author(s):  
Yang Yang ◽  
Xin Yu ◽  
Liqun Chen ◽  
Peihua Zhang

In this work, nine bi-layer knitted samples with varied knitting structures and made up of different yarn compositions were fabricated, and their thermal comfort properties were investigated. The thermal comfort properties were evaluated by breathability, water transfer properties, thermo-physiology properties and dynamic cooling properties, and their relationship with fabric knitting structure and yarn composition were investigated statistically. It was observed that bi-layer knitted fabrics with meshes at one side had better air permeability, moisture management properties, drying performance, thermo-physiological properties and dynamic cooling function, but lower wicking height than bi-layer knitted fabrics with trim and symmetrical structure (without meshes). The composition of nylon and polyester filaments with varied wettability as outer and inners layer of bi-layer knitted fabrics, respectively, improved the water one-way transport capacity significantly. In particular, bi-layer fabrics with asymmetric structure and made up of yarns with varied hydrophilicity as each layer have excellent moisture management capacity. Moreover, fabrics made up of yarns with finer fibers exhibited better thermal comfort properties.


2021 ◽  
pp. 004051752098497
Author(s):  
Ning Mao ◽  
Xiaohong Qin ◽  
Liming Wang ◽  
Jianyong Yu

Wet comfort is a critical performance for fabrics, especially when human bodies release sweat in daily life. Despite excellent moisture absorption performance, cotton yarns are still limited in the moisture release/transfer ability. Here, based on a novel electrospinning technology, polyacrylonitrile and polystyrene (PS) electrospun nanofiber/cotton composite yarns were produced, respectively. Under fluorescence microscopic observation, electrospun fibers within the composite yarns showed a uniform distribution. As a result, these composite yarn-based knitted fabrics obtained a good water transport ability and a fast water evaporation rate. According to the moisture management test, PS electrospun nanofiber composite yarn-based fabrics exhibited a relatively high one-way transport index R (400%), claiming an enhanced moisture management performance. Finally, specific surface area tests and finite element analyses were used to analyze the water transport mechanism inside the yarns. The results proved that a small number of electrospun fibers played a predominant role in enhancing the moisture management ability of the composite yarns.


2015 ◽  
Vol 10 (1) ◽  
pp. 155892501501000 ◽  
Author(s):  
Nida Oğlakcioğlu ◽  
Ahmet Çay ◽  
Arzu Marmarali ◽  
Emel Mert

Engineered yarns are used to provide better clothing comfort for summer garments because of their high levels of moisture and water vapor management. The aim of this study was to investigate the characteristics of knitted structures that were produced using different types of polyester yarns in order to achieve better thermal comfort properties for summer clothing. However they are relatively expensive. Therefore, in this study engineered polyester yarns were combined with cotton and lyocell yarns by plying. This way, the pronounced characteristics of these yarns were added to the knitted structure as well. Channeled polyester, hollow polyester, channeled/hollow blended polyester, cotton, and lyocell yarns were plied with each other and themselves. Then, single jersey structures were knitted using these ply yarn combinations and air permeability, thermal resistance, thermal absorptivity, water vapor permeability, moisture management, and drying properties were tested. The results indicate that channeled PES fabrics are advantageous for hot climates and high physical activities with regards to high permeability and moisture transfer and also to fast drying properties. Besides, air permeability and thermal properties improved through the combination of lyocell yarn with engineered polyester yarns. However, the use of lyocell or cotton with engineered yarns resulted in a to a decrease in moisture management properties and an increase in drying times


2014 ◽  
Vol 18 (5) ◽  
pp. 1469-1472
Author(s):  
Shou-Wei Gao ◽  
Min-Zhen Du ◽  
Wang Ye ◽  
Yao-Xing Jiang ◽  
Yu-Qing Liu

Wetting behavior of a clothing assembly plays an important role in thermophysiological body comfort. The instruments and methods utilised for testing purposes should adequately quantify wetting parameters of fabric thermal comfort. The surface conductivity method has been used to for moisture management testing in fabrics, but that method cannot give the detailed information for fiber-liquid interaction. With the new near-infrared scattering method, the wetting mechanism is introduced and interpreted through liquid transfer process from an infinite liquid reservoir. Wetting results from two kinds of fabrics show the difference in fabric thermal comfort.


2017 ◽  
Vol 17 (1) ◽  
pp. 20-26 ◽  
Author(s):  
Ali Afzal ◽  
Sheraz Ahmad ◽  
Abher Rasheed ◽  
Faheem Ahmad ◽  
Fatima Iftikhar ◽  
...  

Abstract The aim of this study was to analyse the effects of various fabric parameters on the thermal resistance, thermal conductivity, thermal transmittance, thermal absorptivity and thermal insulation of polyester/cotton double layer knitted interlock fabrics. It was found that by increasing fibre content with higher specific heat increases the thermal insulation while decreases the thermal transmittance and absorptivity of the fabric. It was concluded that double layer knitted fabrics developed with higher specific heat fibres, coarser yarn linear densities, higher knitting loop length and fabric thickness could be adequately used for winter clothing purposes.


2021 ◽  
Vol 58 (2) ◽  
pp. 97-105
Author(s):  
Nilüfer Yıldız Varan ◽  
Yavuz Çaydamlı

Abstract This study investigates the effect of washing fabrics (nylon 6.6 powernet knitted fabrics with 30% spandex) treated with chitosan on their moisture management and air permeability. The knitted fabrics were treated with three different solutions of chitosan and dimethylol dihydroxyethylene urea (DMDHEU); in addition to chitosan and DMDHEU, one solution contained the complexing agent ethylenediaminetetraacetic acid (EDTA) and the other contained the nonionic surfactant and penetration agent octylphenol ethoxylate. The three solutions were compared in terms of their effect on moisture management and air permeability properties. Nylon fabrics treated and washed with these solutions were characterized by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Nylon fabrics treated with chitosan and DMDHEU showed the potential to transfer liquid moisture to the lower layer and keep the layer next to the skin dry after 20 washes.


2012 ◽  
Vol 627 ◽  
pp. 164-169 ◽  
Author(s):  
Salwa Tashkandi ◽  
Li Jing Wang ◽  
Sinnappoo Kanesalingam ◽  
Amit Jadhav

Fabric material plays an important role in the thermal comfort of Abaya because it is the outer garment of Muslim women. Abaya is black in colour and covers the whole body except the hands, feet and face. It is mandatory to wear Abaya in the Saudi Arabia and certain parts of Middle East countries irrespective of the outside environmental temperature which could be up to 45°C. Therefore, the thermal transmission characteristics of the abaya are extremely important as human body responds to the external thermal environment through clothing. In a hot environment, it is extremely uncomfortable to wear several layers of clothing under the Abaya. Hence it is essential to enhance the thermal comfort of fabrics used for Abaya. This study investigated five selected knitted fabrics that could be used as Abaya fabrics for thermal resistance, air permeability, thermal comfort and vapour resistance. The results indicated that the fabrics with different knit structures, fibre composition and fabric weight have greater influence on thermal comfort performance.


Sign in / Sign up

Export Citation Format

Share Document