Synthesis of waterborne epoxy resin with diethanolamine-assisted succinimide for improving the strand integrity of polyimide filament

2021 ◽  
pp. 152808372110592
Author(s):  
Yijun Yao ◽  
Miao Wang ◽  
Hailiang Wu ◽  
Yanqin Shen

A water-soluble epoxy resin emulsion was synthesized by diethanolamine-assisted succinimide modified epoxy resin (DSEP) and used to reinforce the strand integrity of polyimide filament (PI). FTIR, XPS, and 1H NMR provide an evidence for the succinimide (SI) and diethanolamine (DEA) bonded onto the epoxy resin (EP) structure in the form of C-N-C. The DSEP emulsion shows high storage and dilution stability, with its particle size distribution and PDI of 118∼232 nm and 0.106∼0.638, respectively. Compared with DEA modified EP, DSEP exhibits better strand integrity for PI filament. The breaking strength of PI filament infiltrated by DSEP can reach 2.59 GPa, which is increased by 47.04% than that of PI filament, and is close to that of commercially available water-soluble polyimide resin (2.63 GPa). In addition, the fracture microstructure of PI filament further confirms that DSEP significantly reinforces the aggregation of PI filament. Importantly, there is no wire splitting phenomenon of DSEP reinforced PI filament after more than 200 times of friction. These benefit from the similar material groups of imide ring and benzene ring between DSEP and PI filament structure, as well as the strong hydrogen bonding interaction between them, as further confirmed by FTIR and SEM analysis.

2006 ◽  
Vol 517 ◽  
pp. 272-274 ◽  
Author(s):  
Ismail Zainol ◽  
Mohamad Ibrahim Ahmad ◽  
Fadzil Ayad Zakaria ◽  
Anita Ramli ◽  
Haslan Fadli Ahmad Marzuki ◽  
...  

The cure process and the mechanical properties of liquid polymethylmethacrylate grafted natural rubber (LMG30) modified epoxy have been studied. Addition of LMG30 significantly increased the fracture toughness and the impact strength of the epoxy resin. The fracture toughness increased up to 22 fold (17.3 MNm-3/2) when modified with 5 phr LMG30. The glass transition temperature however, decreases as the rubber content increases. The SEM analysis shows uniform dispersion of rubber particles within the epoxy matrix with average particle size between 0.4 to 0.8 0m in diameter.


2012 ◽  
Vol 610-613 ◽  
pp. 494-497 ◽  
Author(s):  
Hao Ran Zhou ◽  
Xiao Jiao Liu ◽  
Cui Guo ◽  
Yun Fei Yang

Waterborne epoxy resin was prepared through introducing hydroxyl and carboxyl groups in the main chain of epoxy resin with the bisphenol epoxy resin, toluene diisocyanate and 2,2-dimethylol propionic acid by self-emulsification. Analyzed the structure of products via Fourier transform infrared spectrometer, then to test the water-soluble and stability. And the best conditions of reaction were determined through studying the influence of material ratio, reaction time and reaction temperature to products. The result shows that the synthesized waterborne epoxy resin has favorable stability and water-dispersion.


2018 ◽  
Vol 926 ◽  
pp. 128-133
Author(s):  
Bing Sun ◽  
Yun Fang

Among all kinds of environmental geological factors, the water permeability has the most significant influence on grottoes. The main reason for the destruction of caves is the recurrence and persistence of water seepage. Longmen grottoes mainly used epoxy resin and superfine cement grouting materials in the early seepage prevention. Superfine cement has the problem of efflorescence. The epoxy resin material has a large shrinkability and poor durability. Laboratory tests of the impervious materials were carried out. The results shown that the modified epoxy resin, compared with the waterborne epoxy resin, demonstrated higher strength, lower shrinkage and less volatile. Among all the laboratory test schemes, two samples of the modified epoxy resin which were added several adjuvants had the lower shrinkage and volatile, the higher strength and the stronger acid and alkali resistance, which possessed favourable comprehensive performance and were proved to be the best impervious materials in this study.


2019 ◽  
Author(s):  
Nancy Watfa ◽  
Weimin Xuan ◽  
Zoe Sinclair ◽  
Robert Pow ◽  
Yousef Abul-Haija ◽  
...  

Investigations of chiral host guest chemistry are important to explore recognition in confined environments. Here, by synthesizing water-soluble chiral porous nanocapsule based on the inorganic metal-oxo Keplerate-type cluster, {Mo<sub>132</sub>} with chiral lactate ligands with the composition [Mo<sub>132</sub>O<sub>372</sub>(H<sub>2</sub>O)<sub>72</sub>(<i>x-</i>Lactate)<sub>30</sub>]<sup>42-</sup> (<i>x</i> = D or L), it was possible to study the interaction with a chiral guest, L/D-carnitine and (<i>R</i>/<i>S</i>)-2-butanol in aqueous solution. The enantioselective recognition was studied by quantitative <sup>1</sup>H NMR and <sup>1</sup>H DOSY NMR which highlighted that the chiral recognition is regulated by two distinct sites. Differences in the association constants (K) of L- and D-carnitine, which, due to their charge, are generally restricted from entering the interior of the host, are observed, indicating that their recognition predominantly occurs at the surface pores of the structure. Conversely, a larger difference in association constants (K<i><sub>S</sub></i>/K<i><sub>R</sub></i> = 3) is observed for recognition within the capsule interior of (<i>R</i>)- and (<i>S</i>)-2-butanol.


Author(s):  
Georgel MIHU ◽  
Claudia Veronica UNGUREANU ◽  
Vasile BRIA ◽  
Marina BUNEA ◽  
Rodica CHIHAI PEȚU ◽  
...  

Epoxy resins have been presenting a lot of scientific and technical interests and organic modified epoxy resins have recently receiving a great deal of attention. For obtaining the composite materials with good mechanical proprieties, a large variety of organic modification agents were used. For this study gluten and gelatin had been used as modifying agents thinking that their dispersion inside the polymer could increase the polymer biocompatibility. Equal amounts of the proteins were milled together and the obtained compound was used to form 1 to 5% weight ratios organic agents modified epoxy materials. To highlight the effect of these proteins in epoxy matrix mechanical tests as three-point bending and compression were performed.


Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 89
Author(s):  
Wei Yuan ◽  
Qian Hu ◽  
Jiao Zhang ◽  
Feng Huang ◽  
Jing Liu

This study modified graphene oxide (GO) with hydrophilic octadecylamine (ODA) via covalent bonding to improve its dispersion in silicone-modified epoxy resin (SMER) coatings. The structural and physical properties of ODA-GO were characterized by field-emission scanning electron microscopy (FE-SEM), X-ray diffraction analysis (XRD), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and contact angle tests. The ODA-GO composite materials were added to SMER coatings by physical mixing. FE-SEM, water absorption, and contact angle tests were used to evaluate the physical properties of the ODA-GO/SMER coatings, while salt spray, electrochemical impedance spectroscopy (EIS), and scanning Kelvin probe (SKP) methods were used to test the anticorrosive performance of ODA-GO/SMER composite coatings on Q235 steel substrates. It was found that ODA was successfully grafted onto the surfaces of GO. The resulting ODA-GO material exhibited good hydrophobicity and dispersion in SMER coatings. The anticorrosive properties of the ODA-GO/SMER coatings were significantly improved due to the increased interfacial adhesion between the nanosheets and SMER, lengthening of the corrosive solution diffusion path, and increased cathodic peeling resistance. The 1 wt.% ODA-GO/SMER coating provided the best corrosion resistance than SMER coatings with other amounts of ODA-GO (including no addition). After immersion in 3.5 wt.% NaCl solution for 28 days, the low-frequency end impedance value of the 1 wt.% ODA-GO/SMER coating remained high, at 6.2 × 108 Ω·cm2.


2021 ◽  
Vol 274 ◽  
pp. 122059
Author(s):  
Fuqiang Liu ◽  
Mulian Zheng ◽  
Xianpeng Fan ◽  
Hongyin Li ◽  
Fei Wang ◽  
...  

2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Shivarani Eesam ◽  
Jaswanth S. Bhandaru ◽  
Chandana Naliganti ◽  
Ravi Kumar Bobbala ◽  
Raghuram Rao Akkinepally

Abstract Background Increasing hydrophilicity of poorly water-soluble drugs is a major challenge in drug discovery and development. Cocrystallization is one of the techniques to enhance the hydrophilicity of such drugs. Carvedilol (CAR), a nonselective beta/alpha1 blocker, used in the treatment of mild to moderate congestive heart failure and hypertension, is classified under BCS class II with poor aqueous solubility and high permeability. Present work is an attempt to improve the solubility of CAR by preparing cocrystals using hydrochlorothiazide (HCT), a diuretic drug, as coformer. CAR-HCT (2:0.5) cocrystals were prepared by slurry conversion method and were characterized by DSC, PXRD, FTIR, Raman, and SEM analysis. The solubility, stability, and dissolution (in vitro) studies were conducted for the cocrystals. Results The formation of CAR-HCT cocrystals was confirmed based on melting point, DSC thermograms, PXRD data, FTIR and Raman spectra, and finally by SEM micrographs. The solubility of the prepared cocrystals was significantly enhanced (7.3 times), and the dissolution (in vitro) was improved by 2.7 times as compared to pure drug CAR. Further, these cocrystals were also found to be stable for 3 months (90 days). Conclusion It may be inferred that the drug–drug (CAR-HCT) cocrystallization enhances the solubility and dissolution rate of carvedilol significantly. Further, by combining HCT as coformer could well be beneficial pharmacologically too.


Sign in / Sign up

Export Citation Format

Share Document