scholarly journals Deregulation of MicroRNA-375 Inhibits Proliferation and Migration in Gastric Cancer in Association With Autophagy-Mediated AKT/mTOR Signaling Pathways

2018 ◽  
Vol 17 ◽  
pp. 153303381880649 ◽  
Author(s):  
Kai-Tao Yuan ◽  
Bao-Xia Li ◽  
Yu-Jie Yuan ◽  
Min Tan ◽  
Jin-Fu Tan ◽  
...  
2021 ◽  
Vol 12 (8) ◽  
Author(s):  
Heyun Zhang ◽  
Zhangyu Zheng ◽  
Rongqin Zhang ◽  
Yongcong Yan ◽  
Yaorong Peng ◽  
...  

AbstractHepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. SET and MYND domain-containing protein 3 (SMYD3) has been shown to promote the progression of various types of human cancers, including liver cancer; however, the detailed molecular mechanism is still largely unknown. Here, we report that SMYD3 expression in HCC is an independent prognostic factor for survival and promotes the proliferation and migration of HCC cells. We observed that SMYD3 upregulated sphingosine-1-phosphate receptor 1 (S1PR1) promoter activity by methylating histone 3 (H3K4me3). S1PR1 was expressed at high levels in HCC samples, and high S1PR1 expression was associated with shorter survival. S1PR1 expression was also positively correlated with SMYD3 expression in HCC samples. We confirmed that SMYD3 promotes HCC cell growth and migration in vitro and in vivo by upregulating S1PR1 expression. Further investigations revealed that SMYD3 affects critical signaling pathways associated with the progression of HCC through S1PR1. These findings strongly suggest that SMYD3 has a crucial function in HCC progression that is partially mediated by histone methylation at the downstream gene S1PR1, which affects key signaling pathways associated with carcinogenesis and the progression of HCC.


2021 ◽  
Vol 53 (4) ◽  
pp. 454-462
Author(s):  
Ting Li ◽  
Xiaomin Zuo ◽  
Xiangling Meng

Abstract Circular RNAs (circRNAs) play either oncogenic or tumor suppressive roles in gastric cancer (GC). A previous study demonstrated that circ_002059, a typical circRNA, was downregulated in GC tissues. However, the role and mechanism of circ_002059 in GC development are still unknown. In this study, the levels of circ_002059, miR-182, and metastasis suppressor-1 (MTSS1) were examined by real-time quantitative polymerase chain reaction and western blot analysis. Cell proliferation and migration were evaluated by MTT assay and Transwell migration assay, respectively. The interactions between miR-182 and circ_002059 or MTSS1 were analyzed by dual-luciferase reporter assay. A GC xenograft model was established to validate the role of circ_002059 in GC progression in vivo. Overexpression of circ_002059 significantly inhibited, whereas knockdown of circ_002059 notably facilitated, cell proliferation and migration in GC cells. MTSS1 was found to be a direct target of miR-182 and circ_002059 upregulated MTSS1 expression by competitively sponging miR-182. Transfection with miR-182 mimic and MTSS1 silencing abated the inhibitory effect of circ_002059 on GC progression. Circ_002059 inhibited GC cell xenograft tumor growth by regulating miR-182 and MTSS1 expression. Collectively, Circ_002059 inhibited GC cell proliferation and migration in vitro and xenograft tumor growth in mice, by regulating the miR-182/MTSS1 axis.


2021 ◽  
Author(s):  
Wang Zhang ◽  
Zhendong Liu ◽  
Binchao Liu ◽  
Miaomiao Jiang ◽  
Shi Yan ◽  
...  

Abstract Background: Although many biomarkers have been reported for detecting glioma, the prognosis for the disease remains poor, and therefore, new biomarkers need to be identified. GNG5, which is part of the G-protein family, has been associated with different malignant tumors, though the role of GNG5 in glioma has not been studied. Therefore, we aimed to identify the relationship between GNG5 and glioma prognosis and identify a new biomarker for the diagnosis and treatment of gliomas.Methods: We used data on more than a thousand gliomas from multiple databases and clinical data to determine the expression of GNG5 in glioma. Based on clinical data and CGGA database, we identified the correlation between GNG5 and multiple molecular and clinical features and prognosis using various analytical methods. Co-expression analysis and GSEA were performed to detect GNG5-related genes in glioma and possible signaling pathways involved. ESTIMATE, ssGSEA, and TIMER were used to detect the relationship between GNG5 and the immune microenvironment. Functional experiments were performed to explore the function of GNG5 in glioma cells.Results: GNG5 is highly expressed in gliomas, and its expression level is positively correlated with pathological grade, histological type, age, and tumor recurrence and negatively correlated with isocitrate dehydrogenase mutation, 1p/19 co-deletion, and chemotherapy. Moreover, GNG5 as an independent risk factor was negatively correlated with the overall survival time. GSEA revealed the potential signaling pathways involved in GNG5 function in gliomas, including cell adhesion molecules signaling pathway. The ssGSEA, ESTIMATE, and TIMER based analysis indicated a correlation between GNG5 expression and various immune cells in glioma. In vivo and in vitro experiments showed that GNG5 could participate in glioma cell proliferation and migration.Conclusions: Based on the large data platform and the use of different databases to corroborate results obtained using various datasets, as well as in vitro and in vivo experiments, our study reveals for the first time that GNG5, as an oncogene, is overexpressed in gliomas and can inhibit the proliferation and migration of glioma cells and lead to poor prognosis of patients. Thus, GNG5 is a potential novel biomarker for the clinical diagnosis and treatment of gliomas.


2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Nan Li ◽  
Huanbai Xu ◽  
Yurong Ou ◽  
Zhenzhong Feng ◽  
Qiong Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document