scholarly journals Advanced Small Animal Conformal Radiation Therapy Device

2016 ◽  
Vol 16 (1) ◽  
pp. 45-56 ◽  
Author(s):  
Sunil Sharma ◽  
Ganesh Narayanasamy ◽  
Beata Przybyla ◽  
Jessica Webber ◽  
Marjan Boerma ◽  
...  

We have developed a small animal conformal radiation therapy device that provides a degree of geometrical/anatomical targeting comparable to what is achievable in a commercial animal irradiator. small animal conformal radiation therapy device is capable of producing precise and accurate conformal delivery of radiation to target as well as for imaging small animals. The small animal conformal radiation therapy device uses an X-ray tube, a robotic animal position system, and a digital imager. The system is in a steel enclosure with adequate lead shielding following National Council on Radiation Protection and Measurements 49 guidelines and verified with Geiger-Mueller survey meter. The X-ray source is calibrated following AAPM TG-61 specifications and mounted at 101.6 cm from the floor, which is a primary barrier. The X-ray tube is mounted on a custom-made “gantry” and has a special collimating assembly system that allows field size between 0.5 mm and 20 cm at isocenter. Three-dimensional imaging can be performed to aid target localization using the same X-ray source at custom settings and an in-house reconstruction software. The small animal conformal radiation therapy device thus provides an excellent integrated system to promote translational research in radiation oncology in an academic laboratory. The purpose of this article is to review shielding and dosimetric measurement and highlight a few successful studies that have been performed to date with our system. In addition, an example of new data from an in vivo rat model of breast cancer is presented in which spatially fractionated radiation alone and in combination with thermal ablation was applied and the therapeutic benefit examined.

Author(s):  
Ki-Yong Nam ◽  
J. H. Lim ◽  
J. Park ◽  
H. H. Sohn ◽  
H. K. Kim ◽  
...  

2013 ◽  
Vol 21 (1) ◽  
pp. 242-250 ◽  
Author(s):  
Elisabeth Schültke ◽  
Ralf Menk ◽  
Bernd Pinzer ◽  
Alberto Astolfo ◽  
Marco Stampanoni ◽  
...  

Gold nanoparticles are excellent intracellular markers in X-ray imaging. Having shown previously the suitability of gold nanoparticles to detect small groups of cells with the synchrotron-based computed tomography (CT) technique bothex vivoandin vivo, it is now demonstrated that even single-cell resolution can be obtained in the brain at leastex vivo. Working in a small animal model of malignant brain tumour, the image quality obtained with different imaging modalities was compared. To generate the brain tumour, 1 × 105C6 glioma cells were loaded with gold nanoparticles and implanted in the right cerebral hemisphere of an adult rat. Raw data were acquired with absorption X-ray CT followed by a local tomography technique based on synchrotron X-ray absorption yielding single-cell resolution. The reconstructed synchrotron X-ray images were compared with images obtained by small animal magnetic resonance imaging. The presence of gold nanoparticles in the tumour tissue was verified in histological sections.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Stephan Umkehrer ◽  
Carmela Morrone ◽  
Julien Dinkel ◽  
Laura Aigner ◽  
Maximilian F. Reiser ◽  
...  

Abstract In this study we aim to evaluate the assessment of bronchial pathologies in a murine model of lung transplantation with grating-based X-ray interferometry in vivo. Imaging was performed using a dedicated grating-based small-animal X-ray dark-field and phase-contrast scanner. While the contrast modality of the dark-field signal already showed several promising applications for diagnosing various types of pulmonary diseases, the phase-shifting contrast mechanism of the phase contrast has not yet been evaluated in vivo. For this purpose, qualitative analysis of phase-contrast images was performed and revealed pathologies due to previous lung transplantation, such as unilateral bronchial stenosis or bronchial truncation. Dependent lung parenchyma showed a strong loss in dark-field and absorption signal intensity, possibly caused by several post transplantational pathologies such as atelectasis, pleural effusion, or pulmonary infiltrates. With this study, we are able to show that bronchial pathologies can be visualized in vivo using conventional X-ray imaging when phase-contrast information is analysed. Absorption and dark-field images can be used to quantify the severity of lack of ventilation in the affected lung.


Cancers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 4953
Author(s):  
Mariele Romano ◽  
Alberto Bravin ◽  
Alberto Mittone ◽  
Alicia Eckhardt ◽  
Giacomo Barbone ◽  
...  

The purpose of this study is to use a multi-technique approach to detect the effects of spatially fractionated X-ray Microbeam (MRT) and Minibeam Radiation Therapy (MB) and to compare them to seamless Broad Beam (BB) irradiation. Healthy- and Glioblastoma (GBM)-bearing male Fischer rats were irradiated in-vivo on the right brain hemisphere with MRT, MB and BB delivering three different doses for each irradiation geometry. Brains were analyzed post mortem by multi-scale X-ray Phase Contrast Imaging–Computed Tomography (XPCI-CT), histology, immunohistochemistry, X-ray Fluorescence (XRF), Small- and Wide-Angle X-ray Scattering (SAXS/WAXS). XPCI-CT discriminates with high sensitivity the effects of MRT, MB and BB irradiations on both healthy and GBM-bearing brains producing a first-time 3D visualization and morphological analysis of the radio-induced lesions, MRT and MB induced tissue ablations, the presence of hyperdense deposits within specific areas of the brain and tumor evolution or regression with respect to the evaluation made few days post-irradiation with an in-vivo magnetic resonance imaging session. Histology, immunohistochemistry, SAXS/WAXS and XRF allowed identification and classification of these deposits as hydroxyapatite crystals with the coexistence of Ca, P and Fe mineralization, and the multi-technique approach enabled the realization, for the first time, of the map of the differential radiosensitivity of the different brain areas treated with MRT and MB. 3D XPCI-CT datasets enabled also the quantification of tumor volumes and Ca/Fe deposits and their full-organ visualization. The multi-scale and multi-technique approach enabled a detailed visualization and classification in 3D of the radio-induced effects on brain tissues bringing new essential information towards the clinical implementation of the MRT and MB radiation therapy techniques.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Dongmei Chen ◽  
Fanzhen Meng ◽  
Fengjun Zhao ◽  
Cao Xu

Cone beam X-ray luminescence tomography can realize fast X-ray luminescence tomography imaging with relatively low scanning time compared with narrow beam X-ray luminescence tomography. However, cone beam X-ray luminescence tomography suffers from an ill-posed reconstruction problem. First, the feasibility of experiments with different penetration and multispectra in small animal has been tested using nanophosphor material. Then, the hybrid reconstruction algorithm with KA-FEM method has been applied in cone beam X-ray luminescence tomography for small animals to overcome the ill-posed reconstruction problem, whose advantage and property have been demonstrated in fluorescence tomography imaging. The in vivo mouse experiment proved the feasibility of the proposed method.


2017 ◽  
Vol 11 (4) ◽  
Author(s):  
Surendra Prajapati ◽  
Benjamin Cox ◽  
Robert Swader ◽  
George Petry ◽  
Kevin W. Eliceiri ◽  
...  

Intensity modulated radiation therapy (IMRT) is performed on a regular basis in the clinic to create complex radiation fields to treat cancer, but it has not been implemented in microradiotherapy (mRT) for preclinical systems. A multileaf collimator (MLC) is an integral part of a radiotherapy system that allows IMRT application. Presented here is the development of a key component of an open source mRT system for preclinical research. We have designed and fabricated a binary micro multileaf collimator (bmMLC) for mRT that can provide 1 mm or better resolution at isocenter and attenuate over 98% of a 250 kVp X-ray beam. This is the smallest collimator system designed for RT systems, with 20 brass leaves, each 0.5 mm thick, creating a physical field opening of 1 cm × 1 cm. The mode of actuation for the leaves was rotational, rather than linear, which is typical in larger clinical RT systems. The design presented here met the identified design requirements and represents a rigorous design process, during which several less successful designs were investigated and eventually discarded. After the fabrication of the design, dosimetric characteristics were tested and requirements were met. The final bmMLC designs and technical documents are made available as open-source.


2008 ◽  
Vol 35 (6Part8) ◽  
pp. 2718-2718
Author(s):  
S Sharma ◽  
E Moros ◽  
P Corry

Sign in / Sign up

Export Citation Format

Share Document