scholarly journals Single-cell resolution in high-resolution synchrotron X-ray CT imaging with gold nanoparticles

2013 ◽  
Vol 21 (1) ◽  
pp. 242-250 ◽  
Author(s):  
Elisabeth Schültke ◽  
Ralf Menk ◽  
Bernd Pinzer ◽  
Alberto Astolfo ◽  
Marco Stampanoni ◽  
...  

Gold nanoparticles are excellent intracellular markers in X-ray imaging. Having shown previously the suitability of gold nanoparticles to detect small groups of cells with the synchrotron-based computed tomography (CT) technique bothex vivoandin vivo, it is now demonstrated that even single-cell resolution can be obtained in the brain at leastex vivo. Working in a small animal model of malignant brain tumour, the image quality obtained with different imaging modalities was compared. To generate the brain tumour, 1 × 105C6 glioma cells were loaded with gold nanoparticles and implanted in the right cerebral hemisphere of an adult rat. Raw data were acquired with absorption X-ray CT followed by a local tomography technique based on synchrotron X-ray absorption yielding single-cell resolution. The reconstructed synchrotron X-ray images were compared with images obtained by small animal magnetic resonance imaging. The presence of gold nanoparticles in the tumour tissue was verified in histological sections.

Author(s):  
MiaoMiao Xu ◽  
Jun Guo ◽  
JiaCheng Gu ◽  
LinLin Zhang ◽  
ZiHao Liu ◽  
...  

Abstract Background The deposition of β-amyloid (Aβ) in the brain is a biomarker of Alzheimer’s disease (AD). Highly sensitive Aβ positron emission tomography (PET) imaging plays an essential role in diagnosing and evaluating the therapeutic effects of AD. Aim To synthesize a new Aβ tracer [18F]DRKXH1 (5-(4-(6-(2-[18]fluoroethoxy)ethoxy)imidazo[1,2-alpha]pyridin-2-yl)phenyl) and evaluate the tracer performance by biodistribution analysis, in vivo small-animal PET-CT dynamic scan, ex vivo and in vitro autoradiography, and PET in human subjects. Methods [18F]DRKXH1 was synthesized automatically by the GE FN module. Log D (pH 7.4) and biodistribution of [18F]DRKXH1 were investigated. Small-animal-PET was used for [18F]DRKXH1 and [18F]AV45 imaging study in AD transgenic mice (APPswe/PSEN1dE9) and age-matched normal mice. The distribution volume ratios (DVR) and standardized uptake value ratios (SUVRs) were calculated with the cerebellum as the reference region. The deposition of Aβ plaques in the brain of AD transgenic mice was determined by ex vivo autoradiography and immunohistochemistry. In vitro autoradiography was performed in the postmortem brain sections of AD patients and healthy controls. Two healthy control subjects and one AD patient was subjected to in vivo PET study using [18F]DRKXH1. Results The yield of [18F]DRKXH1 was 40%, and the specific activity was 156.64 ± 11.55 GBq/μmol. [18F]DRKXH1 was mainly excreted through the liver and kidney. The small-animal PET study showed high initial brain uptake and rapid washout of [18F]DRKXH1. The concentration of [18F]DRKXH1 was detected in the cortex and hippocampus of AD transgenic mice brain. The cortex DVR of AD transgenic mice was higher than that of WT mice (P < 0.0001). Moreover, the SUVRs of AD transgenic mice were higher than those of WT mice based on the 0–60-min dynamic scanning. In vitro autoradiography showed a significant concentration of tracer in the Aβ plaque-rich areas in the brain of AD transgenic mice. The DVR value of [18F]-DRKXH1 is higher than that of [18F]-AV45 (1.29 ± 0.05 vs. 1.05 ± 0.08; t = 5.33, P = 0.0003). Autoradiography of postmortem human brain sections showed [18F]DRKXH1-labeled Aβ plaques in the AD brain. The AD patients had high retention in cortical regions, while healthy control subjects had uniformly low radioactivity uptake. Conclusions [18F]DRKXH1 is an Aβ tracer with high sensitivity in preclinical study and has the potential for in vivo detection of the human brain.


Viruses ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1017 ◽  
Author(s):  
Ferren ◽  
Horvat ◽  
Mathieu

Measles remains a major cause of morbidity and mortality worldwide among vaccine preventable diseases. Recent decline in vaccination coverage resulted in re-emergence of measles outbreaks. Measles virus (MeV) infection causes an acute systemic disease, associated in certain cases with central nervous system (CNS) infection leading to lethal neurological disease. Early following MeV infection some patients develop acute post-infectious measles encephalitis (APME), which is not associated with direct infection of the brain. MeV can also infect the CNS and cause sub-acute sclerosing panencephalitis (SSPE) in immunocompetent people or measles inclusion-body encephalitis (MIBE) in immunocompromised patients. To date, cellular and molecular mechanisms governing CNS invasion are still poorly understood. Moreover, the known MeV entry receptors are not expressed in the CNS and how MeV enters and spreads in the brain is not fully understood. Different antiviral treatments have been tested and validated in vitro, ex vivo and in vivo, mainly in small animal models. Most treatments have high efficacy at preventing infection but their effectiveness after CNS manifestations remains to be evaluated. This review describes MeV neural infection and current most advanced therapeutic approaches potentially applicable to treat MeV CNS infection.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
David S. Fischer ◽  
Meshal Ansari ◽  
Karolin I. Wagner ◽  
Sebastian Jarosch ◽  
Yiqi Huang ◽  
...  

AbstractThe in vivo phenotypic profile of T cells reactive to severe acute respiratory syndrome (SARS)-CoV-2 antigens remains poorly understood. Conventional methods to detect antigen-reactive T cells require in vitro antigenic re-stimulation or highly individualized peptide-human leukocyte antigen (pHLA) multimers. Here, we use single-cell RNA sequencing to identify and profile SARS-CoV-2-reactive T cells from Coronavirus Disease 2019 (COVID-19) patients. To do so, we induce transcriptional shifts by antigenic stimulation in vitro and take advantage of natural T cell receptor (TCR) sequences of clonally expanded T cells as barcodes for ‘reverse phenotyping’. This allows identification of SARS-CoV-2-reactive TCRs and reveals phenotypic effects introduced by antigen-specific stimulation. We characterize transcriptional signatures of currently and previously activated SARS-CoV-2-reactive T cells, and show correspondence with phenotypes of T cells from the respiratory tract of patients with severe disease in the presence or absence of virus in independent cohorts. Reverse phenotyping is a powerful tool to provide an integrated insight into cellular states of SARS-CoV-2-reactive T cells across tissues and activation states.


2009 ◽  
Vol 25 (6) ◽  
pp. 615-624 ◽  
Author(s):  
A. A. Postnov ◽  
P. C. D’Haese ◽  
E. Neven ◽  
N. M. De Clerck ◽  
V. P. Persy

2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Hirofumi Fujii ◽  
Masayuki Yamaguchi ◽  
Kazumasa Inoue ◽  
Yasuko Mutou ◽  
Masashi Ueda ◽  
...  

Purpose. We aimed to clearly visualize heterogeneous distribution of hypoxia-inducible factor 1α(HIF) activity in tumor tissuesin vivo.Methods. We synthesized of125I-IPOS, a125I labeled chimeric protein probe, that would visualize HIF activity. The biodistribution of125I-IPOS in FM3A tumor-bearing mice was evaluated. Then, the intratumoral localization of this probe was observed by autoradiography, and it was compared with histopathological findings. The distribution of125I-IPOS in tumors was imaged by a small animal SPECT/CT scanner. The obtainedin vivoSPECT-CT fusion images were compared withex vivoimages of excised tumors. Fusion imaging with MRI was also examined.Results.125I-IPOS well accumulated in FM3A tumors. The intratumoral distribution of125I-IPOS by autoradiography was quite heterogeneous, and it partially overlapped with that of pimonidazole. High-resolution SPECT-CT fusion images successfully demonstrated the heterogeneity of125I-IPOS distribution inside tumors. SPECT-MRI fusion images could give more detailed information about the intratumoral distribution of125I-IPOS.Conclusion. High-resolution SPECT images successfully demonstrated heterogeneous intratumoral distribution of125I-IPOS. SPECT-CT fusion images, more favorably SPECT-MRI fusion images, would be useful to understand the features of heterogeneous intratumoral expression of HIF activityin vivo.


2022 ◽  
Author(s):  
Michael Valente ◽  
Nils Collinet ◽  
Thien-Phong Vu Manh ◽  
Karima Naciri ◽  
Gilles Bessou ◽  
...  

Plasmacytoid dendritic cells (pDC) were identified about 20 years ago, based on their unique ability to rapidly produce copious amounts of all subsets of type I and type III interferon (IFN-I/III) upon virus sensing, while being refractory to infection. Yet, the identity and physiological functions of pDC are still a matter of debate, in a large part due to their lack of specific expression of any single cell surface marker or gene that would allow to track them in tissues and to target them in vivo with high specificity and penetrance. Indeed, recent studies showed that previous methods that were used to identify or deplete pDC also targeted other cell types, including pDC-like cells and transitional DC (tDC) that were proposed to be responsible for all the antigen presentation ability previously attributed to steady state pDC. Hence, improving our understanding of the nature and in vivo choreography of pDC physiological functions requires the development of novel tools to unambiguously identify and track these cells, including in comparison to pDC-like cells and tDC. Here, we report successful generation of a pDC-reporter mouse model, by using an intersectional genetic strategy based on the unique co-expression of Siglech and Pacsin1 in pDC. This pDC-Tomato mouse strain allows specific ex vivo and in situ detection of pDC. Breeding them with Zbtb46GFP mice allowed side-by-side purification and transcriptional profiling by single cell RNA sequencing of bona fide pDC, pDC-like cells and tDC, in comparison to type 1 and 2 conventional DC (cDC1 and cDC2), both at steady state and during a viral infection, revealing diverging activation patterns of pDC-like cells and tDC. Finally, by breeding pDC-Tomato mice with Ifnb1EYFP mice, we determined the choreography of pDC recruitment to the micro-anatomical sites of viral replication in the spleen, with initially similar but later divergent behaviors of the pDC that engaged or not into IFN-I production. Our novel pDC-Tomato mouse model, and newly identified gene modules specific to combinations of DC types and activations states, will constitute valuable resources for a deeper understanding of the functional division of labor between DC types and its molecular regulation at homeostasis and during viral infections.


2005 ◽  
Vol 4 (4) ◽  
pp. 7290.2005.05133 ◽  
Author(s):  
Matthew J. Hardwick ◽  
Ming-Kai Chen ◽  
Kwamena Baidoo ◽  
Martin G. Pomper ◽  
Tomás R. Guilarte

The ability to visualize the immune response with radioligands targeted to immune cells will enhance our understanding of cellular responses in inflammatory diseases. Peripheral benzodiazepine receptors (PBR) are present in monocytes and neutrophils as well as in lung tissue. We used lipopolysaccharide (LPS) as a model of inflammation to assess whether the PBR could be used as a noninvasive marker of inflammation in the lungs. Planar imaging of mice administrated 10 or 30 mg/kg LPS showed increased [123I]-( R)-PK11195 radioactivity in the thorax 2 days after LPS treatment relative to control. Following imaging, lungs from control and LPS-treated mice were harvested for ex vivo gamma counting and showed significantly increased radioactivity above control levels. The specificity of the PBR response was determined using a blocking dose of nonradioactive PK11195 given 30 min prior to radiotracer injection. Static planar images of the thorax of nonradioactive PK11195 pretreated animals showed a significantly lower level of radiotracer accumulation in control and in LPS-treated animals ( p < .05). These data show that LPS induces specific increases in PBR ligand binding in the lungs. We also used in vivo small-animal PET studies to demonstrate increased [11C]-( R)-PK11195 accumulation in the lungs of LPS-treated mice. This study suggests that measuring PBR expression using in vivo imaging techniques may be a useful biomarker to image lung inflammation.


2020 ◽  
Author(s):  
Chang-Hoon Choi ◽  
Carina Stegmayr ◽  
Aliaksandra Shymanskaya ◽  
Wieland A. Worthoff ◽  
Nuno A da Silva ◽  
...  

Abstract Background : In addition to the structural information afforded by 1 H MRI, the use of X-nuclei, such as sodium-23 ( 23 Na) or phosphorus-31 ( 31 P), offers important complementary information concerning physiological and biochemical parameters. By then combining this technique with PET, which provides valuable insight into a wide range of metabolic and molecular processes by using of a variety of radioactive tracers, the scope of medical imaging and diagnostics can be significantly increased. While the use of multimodal imaging is undoubtedly advantageous, identifying the optimal combination of these parameters to diagnose a specific dysfunction is very important and is advanced by the use of sophisticated imaging techniques in specific animal models.Methods : In this pilot study, rats with intracerebral 9L gliosarcomas were used to explore a combination of sequential multinuclear MRI using a sophisticated switchable coil set in a small animal 9.4 T MRI scanner and, subsequently, a small animal PET with the tumour tracer O-(2-[ 18 F]-fluoroethyl)-L-tyrosine ( 18 F-FET). This enabled in vivo multinuclear MR-PET experiments to be conducted without compromising the performance of either multinuclear MR or PET.Results : High-quality in vivo images and spectra including high-resolution 1 H imaging, 23 Na-weighted imaging, detection of 31 P metabolites and 18 F-FET uptake were obtained, allowing the characterisation of tumour tissues in comparison to a normal brain. These parameters have been shown to be useful in the identification of the genetic profile of gliomas, particularly concerning the mutation of the isocitrate hydrogenase gene, which is highly relevant for treatment strategy.Conclusions : The combination of multinuclear MR and PET in, for example, brain tumour models with specific genetic mutations will enable the physiological background of signal alterations to be explored and the identification of the optimal combination of imaging parameters for the non-invasive characterisation of the molecular profile of tumours.


Sign in / Sign up

Export Citation Format

Share Document