An Immersive Workstation Design Tool Using Three-Dimensional Anthropometric Data

Author(s):  
Melinda M. Cerney ◽  
Judy M. Vance ◽  
Jerry R. Duncan
2003 ◽  
pp. 55-82
Author(s):  
M. Despotovic ◽  
Milun Babic ◽  
D. Milovanovic ◽  
Vanja Sustersic

This paper describes a three-dimensional compressible Navier-Stokes code, which has been developed for analysis of turbocompressor blade rows and other internal flows. Despite numerous numerical techniques and statement that Computational Fluid Dynamics has reached state of the art, issues related to successful simulations represent valuable database of how particular tech?nique behave for a specifie problem. This paper deals with rapid numerical method accurate enough to be used as a design tool. The mathematical model is based on System of Favre averaged Navier-Stokes equations that are written in relative frame of reference, which rotates with constant angular velocity around axis of rotation. The governing equations are solved using finite vol?ume method applied on structured grids. The numerical procedure is based on the explicit multistage Runge-Kutta scheme that is coupled with modem numerical procedures for convergence acceleration. To demonstrate the accuracy of the described numer?ical method developed software is applied to numerical analysis of flow through impeller of axial turbocompressor, and obtained results are compared with available experimental data.


Author(s):  
Guy Phuong ◽  
Sylvester Abanteriba ◽  
Paul Haley ◽  
Philippe Guillerot

Volutes are widely used in centrifugal compressors for industrial processes, refrigeration systems, small gas turbines and gas pipelines. However, large costs associated with the volute design and analysis process can be reduced with the introduction of a software design system that ties together both geometry creation and mesh generation having the ultimate intent of improving stage efficiency. Computational Fluid Dynamics (CFD) has become an integral part of engineering design. High quality grids need to be produced as part of the analysis process. Engineers of different expertise may be required to determine volute design constraints and parameters, produce the geometry, and generate a high quality grid. The current research aims to develop and demonstrate a volute design tool that allows design engineers the ability to easily and efficiently generate volute geometry and automate grid generation by means of geometrical constraints using functional relationships. The approach was outlined in [1]. Visualization of volute geometry can be in two-dimensional (2D) or three-dimensional (3D) modes. Control of the diffuser upstream of the scroll, the scroll itself and the conic are totally integrated in the design system. The user can position the conic anywhere in space and control the shape of the conic centroid curve, therefore having complete control over the development of the tongue region. The program will output data for automated grid generation where user can control resulting grid properties. Once the desired design configuration has been determined, the users can output the geometry surfaces and wireframes to a Computer Aided Design (CAD) package for production. Every little detail is also incorporated into the software from volute draft angle, discharge conic centroid shape, to cross section fillet radii. Upon entering all the required constraints and parameters of the volute, the geometry is created in seconds. Grids can be generated in minutes accommodating geometrical changes thus reducing the bottlenecks associated with geometry/grid generation for CFD applications.


Author(s):  
M. Pau ◽  
F. Cambuli ◽  
N. Mandas

Three dimensional steady multistage calculations, using mixing plane approach, are presented for two different blade geometries in a two stage axial test turbine with shrouded blades. A 3D multiblock Navier-Stokes finite volume solver (TBLOCK) has been used in all the simulations. In order to study shroud leakage flow effects the whole shroud cavity geometry has been modeled, overcoming most of the limitations of simple shroud leakage model in calculating fluid flow over complex geometries. Numerical investigations are mainly focused on assessing the ability of the solver to be used as multistage design tool for modeling leakage-mainstream flow interaction. Several calculations are compared. The first computes the main blade flow path with no modeling of the shroud cavities. The second includes the modeling of the shroud cavities for a zero leakage mass flow rate. Finally a multiblock calculation which models all the leakage flow paths and shroud cavities has been carried out for two different levels of shroud seal clearance. It is found that neglecting shroud leakage significantly alters the computed velocity profiles and loss distributions, for both the computed blade geometries. A numerically predicted shroud leakage offset loss is presented for the two considered blade geometries, focusing on the relative importance of the leakage flow, re-entry mixing losses, and inlet and exit shroud cavity effect. Results demonstrates that full calculation of leakage flow paths and cavities is required to obtain reliable results, indicating the different effects of the leakage-to-mainstream flow interaction on the blade geometries computed. Despite a slight increase in the computational time, multiblock approach in handling leakage flow problem can now-days be used as a practical tool in the blade design process and routine shroud leakage calculations.


Author(s):  
Filippo Rubechini ◽  
Michele Marconcini ◽  
Andrea Arnone ◽  
Stefano Cecchi ◽  
Federico Dacca`

A three-dimensional, multistage, Navier-Stokes solver is applied to the numerical investigation of a four stage low-pressure steam turbine. The thermodynamic behavior of the wet steam is reproduced by adopting a real-gas model, based on the use of gas property tables. Geometrical features and flow-path details consistent with the actual turbine geometry, such as cavity purge flows, shroud leakage flows and partspan snubbers, are accounted for, and their impact on the turbine performance is discussed. These details are included in the analysis using simple models, which prevent a considerable growth of the computational cost and make the overall procedure attractive as a design tool for industrial purposes. Shroud leakage flows are modeled by means of suitable endwall boundary conditions, based on coupled sources and sinks, while body forces are applied to simulate the presence of the damping wires on the blades. In this work a detailed description of these models is provided, and the results of computations are compared with experimental measurements.


1976 ◽  
Vol 98 (3) ◽  
pp. 1074-1079 ◽  
Author(s):  
J. A. Collins ◽  
B. T. Hagan ◽  
H. M. Bratt

A three-dimensional failure-experience cell matrix is proposed for the purpose of organizing and analyzing existing failure experience data. In the proposed matrix the three axes represent failure modes, elemental mechanical functions, and corrective actions. The usefulness of the failure-experience matrix is demonstrated by investigating over 500 individual failed parts from U. S. Army helicopters. It is proposed that data from all industry should be gathered and inserted into a central failure-experience matrix and made accessible to all designers.


2004 ◽  
Vol 126 (2) ◽  
pp. 268-276 ◽  
Author(s):  
Paolo Boncinelli ◽  
Filippo Rubechini ◽  
Andrea Arnone ◽  
Massimiliano Cecconi ◽  
Carlo Cortese

A numerical model was included in a three-dimensional viscous solver to account for real gas effects in the compressible Reynolds averaged Navier-Stokes (RANS) equations. The behavior of real gases is reproduced by using gas property tables. The method consists of a local fitting of gas data to provide the thermodynamic property required by the solver in each solution step. This approach presents several characteristics which make it attractive as a design tool for industrial applications. First of all, the implementation of the method in the solver is simple and straightforward, since it does not require relevant changes in the solver structure. Moreover, it is based on a low-computational-cost algorithm, which prevents a considerable increase in the overall computational time. Finally, the approach is completely general, since it allows one to handle any type of gas, gas mixture or steam over a wide operative range. In this work a detailed description of the model is provided. In addition, some examples are presented in which the model is applied to the thermo-fluid-dynamic analysis of industrial turbomachines.


2009 ◽  
Vol 39 (1) ◽  
pp. 277-282 ◽  
Author(s):  
Jinwoo Park ◽  
Yunja Nam ◽  
Eunkyung Lee ◽  
Sunmi Park

1980 ◽  
Vol 102 (4) ◽  
pp. 742-748 ◽  
Author(s):  
L. L. Durocher ◽  
J. Kane

A strength-of-materials approach is used to develop an approximate stiffness matrix for a uniformly-pretwisted beam segment. The beam element is a 12 degree-of-freedom member that includes shear effects, eccentric loading effects, axial-torsional and bending-torsional coupling, and the torsional stiffening effect of the natural pretwist. The current formulation can be employed as an inexpensive preliminary design tool for pretwisted blading that is suitable for implementation on low-core computer graphics systems. After obtaining a workable geometry, final design optimization can be performed by utilizing more sophisticated, and expensive, three-dimensional finite element models.


Sign in / Sign up

Export Citation Format

Share Document