It's Turtles all the Way Down: A Comparative Analysis of Visually Induced Motion Sickness

Author(s):  
L. James Smart ◽  
Edward W. Otten ◽  
Thomas A. Stoffregen

One of the most frustrating aspects of motion sickness is the apparent lack of predictability, particularly from one context (seasickness) to another (cybersickness). It has been postulated that this lack of predictability is indicative of separate but related disorders. Recent evidence has suggested that the problem may not lie in the disorder itself, but in the measures used to predict it. Based on the predictions of Riccio and Stoffregen (1991) and the findings of Smart, Stoffregen, and Bardy (2002), a secondary analysis was performed using parameters of postural motion in order to classify participants who would later become motion sick across three laboratory (four modes of presentation: moving room (Smart, et al, 2002), high fidelity flight simulator (Stoffregen, et al, 2000) large screen projection, and head mounted display (Otten, 2005)) settings. Results suggest that measures of postural instability may serve as a common, minimally invasive, and predictive index of visually induced motion sickness.

2018 ◽  
Author(s):  
Yoshihito Masuoka ◽  
Hiroyuki Morikawa ◽  
Takashi Kawai ◽  
Toshio Nakagohri

BACKGROUND Virtual reality (VR) technology has started to gain attention as a form of surgical support in medical settings. Likewise, the widespread use of smartphones has resulted in the development of various medical applications; for example, Google Cardboard, which can be used to build simple head-mounted displays (HMDs). However, because of the absence of observed and reported outcomes of the use of three-dimensional (3D) organ models in relevant environments, we have yet to determine the effects of or issues with the use of such VR technology. OBJECTIVE The aim of this paper was to study the issues that arise while observing a 3D model of an organ that is created based on an actual surgical case through the use of a smartphone-based simple HMD. Upon completion, we evaluated and gathered feedback on the performance and usability of the simple observation environment we had created. METHODS We downloaded our data to a smartphone (Galaxy S6; Samsung, Seoul, Korea) and created a simple HMD system using Google Cardboard (Google). A total of 17 medical students performed 2 experiments: an observation conducted by a single observer and another one carried out by multiple observers using a simple HMD. Afterward, they assessed the results by responding to a questionnaire survey. RESULTS We received a largely favorable response in the evaluation of the dissection model, but also a low score because of visually induced motion sickness and eye fatigue. In an introspective report on simultaneous observations made by multiple observers, positive opinions indicated clear image quality and shared understanding, but displeasure caused by visually induced motion sickness, eye fatigue, and hardware problems was also expressed. CONCLUSIONS We established a simple system that enables multiple persons to observe a 3D model. Although the observation conducted by multiple observers was successful, problems likely arose because of poor smartphone performance. Therefore, smartphone performance improvement may be a key factor in establishing a low-cost and user-friendly 3D observation environment.


Author(s):  
Mara Kaufeld ◽  
Katharina De Coninck ◽  
Jennifer Schmidt ◽  
Heiko Hecht

AbstractVisually induced motion sickness (VIMS) is a common side-effect of exposure to virtual reality (VR). Its unpleasant symptoms may limit the acceptance of VR technologies for training or clinical purposes. Mechanical stimulation of the mastoid and diverting attention to pleasant stimuli-like odors or music have been found to ameliorate VIMS. Chewing gum combines both in an easy-to-administer fashion and should thus be an effective countermeasure against VIMS. Our study investigated whether gustatory-motor stimulation by chewing gum leads to a reduction of VIMS symptoms. 77 subjects were assigned to three experimental groups (control, peppermint gum, and ginger gum) and completed a 15-min virtual helicopter flight, using a VR head-mounted display. Before and after VR exposure, we assessed VIMS with the Simulator Sickness Questionnaire (SSQ), and during the virtual flight once every minute with the Fast Motion Sickness Scale (FMS). Chewing gum (peppermint gum: M = 2.44, SD = 2.67; ginger gum: M = 2.57, SD = 3.30) reduced the peak FMS scores by 2.05 (SE = 0.76) points as compared with the control group (M = 4.56, SD = 3.52), p < 0.01, d = 0.65. Additionally, taste ratings correlated slightly negatively with both the SSQ and the peak FMS scores, suggesting that pleasant taste of the chewing gum is associated with less VIMS. Thus, chewing gum may be useful as an affordable, accepted, and easy-to-access way to mitigate VIMS in numerous applications like education or training. Possible mechanisms behind the effect are discussed.


2019 ◽  
Vol 9 (9) ◽  
pp. 1919 ◽  
Author(s):  
Nam-Gyoon Kim ◽  
Beom-Su Kim

The present study investigated the effect of retinal eccentricity on visually induced motion sickness (VIMS) and postural control. Participants wore a head-mounted display masked for the central 10° (peripheral vision), the peripheral except for the central 10° (central vision), or unmasked (control) to watch a highly immersive 3D virtual reality (VR) ride along China’s Great Wall. The Simulator Sickness Questionnaire was administered to assess VIMS symptoms before and after the VR exposure. In addition, postural sway data were collected via sensors attached to each participant’s head, torso, and hip. Results demonstrated that peripheral vision triggered the most severe symptoms of motion sickness, whereas full vision most perturbed posture. The latter finding contradicts previous research findings demonstrating the peripheral advantage of postural control. Although the source of compromised postural control under peripheral stimulation is not clear, the provocative nature of visual stimulation depicting a roller-coaster ride along a rugged path likely contributed to the contradictory findings. In contrast, motion sickness symptoms were least severe, and posture was most stable, under central vision. These findings provide empirical support for the tactic assumed by VR engineers who reduce the size of the field of view to ameliorate the symptoms of motion sickness.


2004 ◽  
Author(s):  
Mustapha Mouloua ◽  
Janan Smither ◽  
Robert C. Kennedy ◽  
Robert S. Kenned ◽  
Dan Compton ◽  
...  

2017 ◽  
Vol 23 (1) ◽  
pp. 85-99 ◽  
Author(s):  
Behrang Keshavarz ◽  
Alison C. Novak ◽  
Lawrence J. Hettinger ◽  
Thomas A. Stoffregen ◽  
Jennifer L. Campos

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Géraldine Fauville ◽  
Anna C. M. Queiroz ◽  
Erika S. Woolsey ◽  
Jonathan W. Kelly ◽  
Jeremy N. Bailenson

AbstractResearch about vection (illusory self-motion) has investigated a wide range of sensory cues and employed various methods and equipment, including use of virtual reality (VR). However, there is currently no research in the field of vection on the impact of floating in water while experiencing VR. Aquatic immersion presents a new and interesting method to potentially enhance vection by reducing conflicting sensory information that is usually experienced when standing or sitting on a stable surface. This study compares vection, visually induced motion sickness, and presence among participants experiencing VR while standing on the ground or floating in water. Results show that vection was significantly enhanced for the participants in the Water condition, whose judgments of self-displacement were larger than those of participants in the Ground condition. No differences in visually induced motion sickness or presence were found between conditions. We discuss the implication of this new type of VR experience for the fields of VR and vection while also discussing future research questions that emerge from our findings.


2017 ◽  
Vol 235 (9) ◽  
pp. 2811-2820 ◽  
Author(s):  
Sarah D’Amour ◽  
Jelte E. Bos ◽  
Behrang Keshavarz

Sign in / Sign up

Export Citation Format

Share Document