Computational Modeling of Finger Swipe Gestures on Touchscreen

Author(s):  
Heejin Jeong ◽  
Yili Liu

Although swiping (also called flicking) is one of the commonly used touchscreen gestures, few modeling studies have been conducted. In this paper, a computational model that focuses on touchscreen swipe gestures was developed by extending the QN-MHP (Queuing Network-Model Human Processor) architecture. The model assumed that the swiped-route follows a three-dimensional path. To model the finger swipe gesture, an operator (i.e., “ Swipe-with-finger”) for the Queuing Network Cognitive Architecture was developed using an existing regression equation for predicting the finger movement time in 3D space (Cha and Myung, 2013). The model was validated with two corresponding experimental results in the literature. As a result, the swiping times generated by the model were well fit with the human subject data.

Author(s):  
Trent M. Guess ◽  
Lorin P. Maletsky

A three-dimensional dynamic computational model was developed for the dual purposes of predicting and replicating joint loading generated by a five-axis dynamic knee simulator. The model was verified through an analog knee that was constrained for accurate modeling and instrumented to directly measure joint forces. The verified model was then used to generate control profiles to the five axes of the simulator for replication of desired joint loading. Reproduction of a walking profile is demonstrated.


Author(s):  
Chen Li ◽  
Yue Tang ◽  
Yingshi Zheng ◽  
Paramsothy Jayakumar ◽  
Tulga Ersal

Objective This paper extends a prior human operator model to capture human steering performance in the teleoperation of unmanned ground vehicles (UGVs) in path-following scenarios with varying speed. Background A prior study presented a human operator model to predict human steering performance in the teleoperation of a passenger-sized UGV at constant speeds. To enable applications to varying speed scenarios, the model needs to be extended to incorporate speed control and be able to predict human performance under the effect of accelerations/decelerations and various time delays induced by the teleoperation setting. A strategy is also needed to parameterize the model without human subject data for a truly predictive capability. Method This paper adopts the ACT-R cognitive architecture and two-point steering model used in the previous work, and extends the model by incorporating a far-point speed control model to allow for varying speed. A parameterization strategy is proposed to find a robust set of parameters for each time delay to maximize steering performance. Human subject experiments are conducted to validate the model. Results Results show that the parameterized model can predict both the trend of average lane keeping error and its lowest value for human subjects under different time delays. Conclusions The proposed model successfully extends the prior computational model to predict human steering behavior in a teleoperated UGV with varying speed. Application This computational model can be used to substitute for human operators in the process of development and testing of teleoperated UGV technologies and allows fully simulation-based development and studies.


2005 ◽  
Vol 127 (7) ◽  
pp. 1216-1221 ◽  
Author(s):  
Trent M. Guess ◽  
Lorin P. Maletsky

As a first step towards reproducing desired three-dimensional joint loading and motion on a dynamic knee simulator, the goal of this study was to develop and verify a three-dimensional computational model that generated control profiles for the simulator using desired knee loading and motion as model inputs. The developed model was verified by predicting tibio-femoral loading on an instrumented analog knee for given actuator forces and the ability to generate simulator control profiles was demonstrated using a three-dimensional walking profile. The model predicted axial tibia loading for a sagittal-plane dual-limb squat within 1% of measured peak loading. Adding out-of-sagittal-plane forces decreased the accuracy of load prediction. The model generated control profiles to the simulator that produced axial tibia loading within 16% of desired for walking. Discrepancies in predicted and measured quadriceps forces influenced the accuracy of the generated control profiles. Future work will replace the analog knee in both the model and machine with a prosthetic knee.


Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 444
Author(s):  
Guoning Si ◽  
Liangying Sun ◽  
Zhuo Zhang ◽  
Xuping Zhang

This paper presents the design, fabrication, and testing of a novel three-dimensional (3D) three-fingered electrothermal microgripper with multiple degrees of freedom (multi DOFs). Each finger of the microgripper is composed of a V-shaped electrothermal actuator providing one DOF, and a 3D U-shaped electrothermal actuator offering two DOFs in the plane perpendicular to the movement of the V-shaped actuator. As a result, each finger possesses 3D mobilities with three DOFs. Each beam of the actuators is heated externally with the polyimide film. The durability of the polyimide film is tested under different voltages. The static and dynamic properties of the finger are also tested. Experiments show that not only can the microgripper pick and place microobjects, such as micro balls and even highly deformable zebrafish embryos, but can also rotate them in 3D space.


2021 ◽  
pp. 174569162097058
Author(s):  
Olivia Guest ◽  
Andrea E. Martin

Psychology endeavors to develop theories of human capacities and behaviors on the basis of a variety of methodologies and dependent measures. We argue that one of the most divisive factors in psychological science is whether researchers choose to use computational modeling of theories (over and above data) during the scientific-inference process. Modeling is undervalued yet holds promise for advancing psychological science. The inherent demands of computational modeling guide us toward better science by forcing us to conceptually analyze, specify, and formalize intuitions that otherwise remain unexamined—what we dub open theory. Constraining our inference process through modeling enables us to build explanatory and predictive theories. Here, we present scientific inference in psychology as a path function in which each step shapes the next. Computational modeling can constrain these steps, thus advancing scientific inference over and above the stewardship of experimental practice (e.g., preregistration). If psychology continues to eschew computational modeling, we predict more replicability crises and persistent failure at coherent theory building. This is because without formal modeling we lack open and transparent theorizing. We also explain how to formalize, specify, and implement a computational model, emphasizing that the advantages of modeling can be achieved by anyone with benefit to all.


Sensor Review ◽  
2017 ◽  
Vol 37 (3) ◽  
pp. 312-321 ◽  
Author(s):  
Yixiang Bian ◽  
Can He ◽  
Kaixuan Sun ◽  
Longchao Dai ◽  
Hui Shen ◽  
...  

Purpose The purpose of this paper is to design and fabricate a three-dimensional (3D) bionic airflow sensing array made of two multi-electrode piezoelectric metal-core fibers (MPMFs), inspired by the structure of a cricket’s highly sensitive airflow receptor (consisting of two cerci). Design/methodology/approach A metal core was positioned at the center of an MPMF and surrounded by a hollow piezoceramic cylinder. Four thin metal films were spray-coated symmetrically on the surface of the fiber that could be used as two pairs of sensor electrodes. Findings In 3D space, four output signals of the two MPMFs arrays can form three “8”-shaped spheres. Similarly, the sensing signals for the same airflow are located on a spherical surface. Originality/value Two MPMF arrays are sufficient to detect the speed and direction of airflow in all three dimensions.


2013 ◽  
Vol 319 ◽  
pp. 599-604
Author(s):  
Makhsuda Juraeva ◽  
Kyung Jin Ryu ◽  
Sang Hyun Jeong ◽  
Dong Joo Song

A computational model of existing Seoul subway tunnelwas analyzed in this research. The computational model was comprised of one natural ventilationshaft, two mechanical ventilationshafts, one mechanical airsupply, a twin-track tunnel, and a train. Understanding the flow pattern of the train-induced airflow in the tunnel was necessary to improve ventilation performance. The research objective wasto improve the air quality in the tunnel by investigating train-induced airflow in the twin-track subway tunnel numerically. The numerical analysis characterized the aerodynamic behavior and performance of the ventilation system by solving three-dimensional turbulent Reynolds-averaged Navier-Stokes equations. ANSYS CFX software was used for the computations. The ventilation and aerodynamic characteristics in the tunnel were investigated by analyzing the mass flowrateat the exits of the ventilation mechanicalshafts. As the train passed the mechanical ventilation shafts, the amount of discharged-air in the ventilationshafts decreased rapidly. The air at the exits of the ventilation shafts was gradually recovered with time, after the train passed the ventilation shafts. The developed mechanical air-supply for discharging dusty air and supplying clean airwas investigated.The computational results showed that the developed mechanical air-supplycould improve the air quality in the tunnel.


2005 ◽  
Vol 89 (2) ◽  
pp. 1389-1397 ◽  
Author(s):  
Muhammad H. Zaman ◽  
Roger D. Kamm ◽  
Paul Matsudaira ◽  
Douglas A. Lauffenburger

Sign in / Sign up

Export Citation Format

Share Document