A general three-dimensional computational model for nonlinear composite structures and materials

Author(s):  
E. STANTON
1996 ◽  
Vol 24 (4) ◽  
pp. 339-348 ◽  
Author(s):  
R. M. V. Pidaparti

Abstract A three-dimensional (3D) beam finite element model was developed to investigate the torsional stiffness of a twisted steel-reinforced cord-rubber belt structure. The present 3D beam element takes into account the coupled extension, bending, and twisting deformations characteristic of the complex behavior of cord-rubber composite structures. The extension-twisting coupling due to the twisted nature of the cords was also considered in the finite element model. The results of torsional stiffness obtained from the finite element analysis for twisted cords and the two-ply steel cord-rubber belt structure are compared to the experimental data and other alternate solutions available in the literature. The effects of cord orientation, anisotropy, and rubber core surrounding the twisted cords on the torsional stiffness properties are presented and discussed.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2801
Author(s):  
Bartosz Miller ◽  
Leonard Ziemiański

The aim of the following paper is to discuss a newly developed approach for the identification of vibration mode shapes of multilayer composite structures. To overcome the limitations of the approaches based on image analysis (two-dimensional structures, high spatial resolution of mode shapes description), convolutional neural networks (CNNs) are applied to create a three-dimensional mode shapes identification algorithm with a significantly reduced number of mode shape vector coordinates. The CNN-based procedure is accurate, effective, and robust to noisy input data. The appearance of local damage is not an obstacle. The change of the material and the occurrence of local material degradation do not affect the accuracy of the method. Moreover, the application of the proposed identification method allows identifying the material degradation occurrence.


2013 ◽  
Vol 319 ◽  
pp. 599-604
Author(s):  
Makhsuda Juraeva ◽  
Kyung Jin Ryu ◽  
Sang Hyun Jeong ◽  
Dong Joo Song

A computational model of existing Seoul subway tunnelwas analyzed in this research. The computational model was comprised of one natural ventilationshaft, two mechanical ventilationshafts, one mechanical airsupply, a twin-track tunnel, and a train. Understanding the flow pattern of the train-induced airflow in the tunnel was necessary to improve ventilation performance. The research objective wasto improve the air quality in the tunnel by investigating train-induced airflow in the twin-track subway tunnel numerically. The numerical analysis characterized the aerodynamic behavior and performance of the ventilation system by solving three-dimensional turbulent Reynolds-averaged Navier-Stokes equations. ANSYS CFX software was used for the computations. The ventilation and aerodynamic characteristics in the tunnel were investigated by analyzing the mass flowrateat the exits of the ventilation mechanicalshafts. As the train passed the mechanical ventilation shafts, the amount of discharged-air in the ventilationshafts decreased rapidly. The air at the exits of the ventilation shafts was gradually recovered with time, after the train passed the ventilation shafts. The developed mechanical air-supply for discharging dusty air and supplying clean airwas investigated.The computational results showed that the developed mechanical air-supplycould improve the air quality in the tunnel.


2012 ◽  
Vol 2012 ◽  
pp. 1-19 ◽  
Author(s):  
Fucai Li ◽  
Haikuo Peng ◽  
Xuewei Sun ◽  
Jinfu Wang ◽  
Guang Meng

A three-dimensional spectral element method (SEM) was developed for analysis of Lamb wave propagation in composite laminates containing a delamination. SEM is more efficient in simulating wave propagation in structures than conventional finite element method (FEM) because of its unique diagonal form of the mass matrix. Three types of composite laminates, namely, unidirectional-ply laminates, cross-ply laminates, and angle-ply laminates are modeled using three-dimensional spectral finite elements. Wave propagation characteristics in intact composite laminates are investigated, and the effectiveness of the method is validated by comparison of the simulation results with analytical solutions based on transfer matrix method. Different Lamb wave mode interactions with delamination are evaluated, and it is demonstrated that symmetric Lamb wave mode may be insensitive to delamination at certain interfaces of laminates while the antisymmetric mode is more suited for identification of delamination in composite structures.


2005 ◽  
Vol 89 (2) ◽  
pp. 1389-1397 ◽  
Author(s):  
Muhammad H. Zaman ◽  
Roger D. Kamm ◽  
Paul Matsudaira ◽  
Douglas A. Lauffenburger

2017 ◽  
Vol 14 (130) ◽  
pp. 20170202 ◽  
Author(s):  
Joseph Libby ◽  
Arsalan Marghoub ◽  
David Johnson ◽  
Roman H. Khonsari ◽  
Michael J. Fagan ◽  
...  

During the first year of life, the brain grows rapidly and the neurocranium increases to about 65% of its adult size. Our understanding of the relationship between the biomechanical forces, especially from the growing brain, the craniofacial soft tissue structures and the individual bone plates of the skull vault is still limited. This basic knowledge could help in the future planning of craniofacial surgical operations. The aim of this study was to develop a validated computational model of skull growth, based on the finite-element (FE) method, to help understand the biomechanics of skull growth. To do this, a two-step validation study was carried out. First, an in vitro physical three-dimensional printed model and an in silico FE model were created from the same micro-CT scan of an infant skull and loaded with forces from the growing brain from zero to two months of age. The results from the in vitro model validated the FE model before it was further developed to expand from 0 to 12 months of age. This second FE model was compared directly with in vivo clinical CT scans of infants without craniofacial conditions ( n = 56). The various models were compared in terms of predicted skull width, length and circumference, while the overall shape was quantified using three-dimensional distance plots. Statistical analysis yielded no significant differences between the male skull models. All size measurements from the FE model versus the in vitro physical model were within 5%, with one exception showing a 7.6% difference. The FE model and in vivo data also correlated well, with the largest percentage difference in size being 8.3%. Overall, the FE model results matched well with both the in vitro and in vivo data. With further development and model refinement, this modelling method could be used to assist in preoperative planning of craniofacial surgery procedures and could help to reduce reoperation rates.


Author(s):  
Ethan R Pedneau ◽  
Su Su Wang

Abstract Determination of permeability of thick-section glass fabric preforms with fabric layers of different architectures is critical for manufacturing large, thick composite structures with complex geometry, such as wind turbine blades. The thick-section reinforcement permeability is inherently three-dimensional and needs to be obtained for accurate composite processing modeling and analysis. Numerical simulation of the liquid stage of vacuum-assisted resin infusion molding (VARIM) is important to advance the composite manufacturing process and reduce processing-induced defects. In this research, the 3D permeability of thick-section E-glass fabric reinforcement preforms is determined and the results are validated by a comparison between flow front progressions from experiments and from numerical simulations using ANSYS Fluent software. The orientation of the principal permeability axes were unknown prior to experiments. The approach used in this research differs from those in literature in that the through-thickness permeability is determined as a function of flow front positions along the principal axes and the in-plane permeabilities and is not dependent on the inlet radius. The approach was tested on reinforcements with fabric architectures which vary through-the-thickness direction, such as those in a spar cap of a wind turbine blade. The computational simulations of the flow-front progression through-the-thickness were consistent with experimental observations.


2009 ◽  
Vol 79-82 ◽  
pp. 1173-1176
Author(s):  
Guang Quan Yue ◽  
Bo Ming Zhang ◽  
Shan Yi Du ◽  
Fu Hong Dai ◽  
Cheng Zhang ◽  
...  

Framed curing mold is subjected to an uneven thermal load, gravity force and the pressures from composite parts and auxiliary tools during autoclave processing of thermosetting composite structures. And those loads induce the warpage of framed-mold. The warpage of framed-mold during autoclave processing influences dimensional precision of composite parts. In the present work, a three-dimensional finite element model for prediction of the warpage of framed-mold during autoclave processing has been developed. This model solved the coupling problem between the deformation and the temperature distribution of framed-mold and allows analysis of all major identified deformation influencing factors. And numerical predictions compare quite well with experimental measurements. A parametric study was performed using FEM program to examine the effect of varying the thickness of framed-mold, the shape and the dimension of mold vents.


2001 ◽  
Author(s):  
Jay R. Sayre ◽  
Alfred C. Loos

Abstract Vacuum assisted resin transfer molding (VARTM) has shown potential to significantly reduce the manufacturing cost of high-performance aerospace composite structures. In this investigation, high fiber volume fraction, triaxially braided preforms with through-the-thickness stitching were successfully resin infiltrated by the VARTM process. The preforms, resin infiltrated with three different resin systems, produced cured composites that were fully wet-out and void free. A three-dimensional finite element model was used to simulation resin infusion into the preforms. The predicted flow patterns agreed well with the flow pattern observed during the infiltration process. The total infiltration times calculated using the model compared well with the measured times.


Sign in / Sign up

Export Citation Format

Share Document