The Immediate Effects of Tai Chi via a Video Platform Delivery on the Postural Stability of Healthy Young Adults

Author(s):  
Zachary A. M. Cordingley ◽  
Paolo Sanzo ◽  
Carlos Zerpa

Tai chi is effective for improving the postural stability of older adults, but the effects on healthy young adults has yet to be investigated. Currently, the use of virtual delivery platforms for various exercise prescriptions to patients has had to be quickly introduced related to the onset of the COVID-19 pandemic and physical distancing requirements. This study attempted to explore the pre-/post-test measures of postural stability from 15 healthy young adult participants under eyes open (EO) and eyes closed (EC) and firm/foam surface conditions after learning a battery of tai chi exercises and forms delivered by instructional video. Center of pressure-based measures of mean sway velocity (MSV) and 95% elliptical sway area (EA) were assessed. Three-way ANOVAs were conducted to determine if MSV and EA were significantly different across the eye conditions, surface conditions, and time. Both EA and MSV were found to significantly increase from EO to EC on a foam surface; however, only MSV under EC conditions was found to decrease significantly following the intervention.

2018 ◽  
Vol 30 (01) ◽  
pp. 1850014
Author(s):  
Chu-Fen Chang ◽  
Hui-Ji Fan ◽  
Hung-Bin Chen ◽  
Houu-Wooi Lim ◽  
Hsiao-Yuan Lee ◽  
...  

The aim of this study was to investigate the immediate effect of wearing the functional insoles with different slopes of forefoot wedges on postural stability in young adults during quiet stance. In this study, the functional insole was composed of a forefoot wedge and a medial arch support. Twelve healthy young adults (six males and six females) participated. Each subject wore sneakers with and without functional insole and stood as still as possible on a force plate with feet together, arms by side and head facing ahead for 60[Formula: see text]s, while eyes open and eyes closed, respectively. The functional insole was applied in the random sequence of no insole, wearing insole with a medial arch and a four-degree forefoot wedge, as well as wearing insole with a medial arch and an eight-degree forefoot wedge. The sway areas as well as the maximal excursions of the center of pressure (COP) in anterior–posterior (AP) and medial–lateral (ML) directions were used to evaluate the static postural stability. During stance with feet together and eyes closed, the sway area and maximal excursion of the COP in the AP direction were significantly decreased when wearing an eight-degree forefoot wedge functional insole. Since the reduced displacements of the COP indicated better postural control, it was suggested that the functional insole with an eight-degree forefoot wedge and a medial arch support might be beneficial to improve the postural stability in patients with impaired balance control, especially for whom having high risk of forward falls.


Author(s):  
Carley Bowman ◽  
Aleena Jose ◽  
Martin G Rosario

Introduction: Most studies on postural deviations during single and dual tasks have been extensively studied in neuromuscular and older adult populations. Nevertheless, further research is warranted to identify whether such tasks can impose postural adaptations in young, healthy adults without sensory impairments. Aim: To assess postural stability modifications in young adults during single tasks and dual motor tasks (holding a cup filled with water) while concomitantly challenging the sensory systems. Materials and Methods: This was the cross-sectional study on 82 young adults (18-45 years old) from Texas Woman’s University (TWU) Health Science Center in Dallas, Texas, and surrounding areas. Standing postural control was measured by collecting total sway, direction of sway and velocity in the Anterior-Posterior (AP) and Medial-Lateral (ML) directions during different balance tasks. For single and dual tasks, the tests were performed with a bipedal stance on foam involving challenging the sensory input via Eyes Open (EO), Eyes Closed (EC), and head movements with eyes open (EO HUD) and closed (EC HUD). The dual motor tasks were similar to the single tasks with the addition of holding a cup full of water to split attention. Data were placed into the Statistical Package for Social Sciences (SPSS) Data Analysis 25.0 system and were analysed for repeated measures Analysis of Variance (ANOVA) analysis. Results: Eighty-two healthy young adults participated in this study (mean age of 24.6±2.7 years, 13 males and 69 females). An ANOVA analysis revealed that postural stability was considerably altered during motor tasks. Sway in the Antero-Posterior (AP) direction, and velocity of sway increased as the complexity of the tasks intensified. A substantial difference in total sway during single tasks when eyes were closed compared to eyes open (p-value <0.01) was noted. There was a significant difference in total sway (AP and ML) during eyes open (EOM) to eyes closed (ECM) and during eyes open with head moving up and down (EOM HUD) (p-value 0.001). There were significant differences in mean AP velocity during EO (0.11±0.12) compared to EC HUD (0.19±0.15), and when comparing EOM (0.07±0.04) to ECM HUD (0.13±0.08) (p=0.01) Conclusion: This study identified postural changes when comparing single and dual tasks in healthy young adults, and the outcomes of this study showed definite distinctions in postural responses during single and dual motor tasks.


Sports ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 89
Author(s):  
Albina Andreeva ◽  
Andrey Melnikov ◽  
Dmitry Skvortsov ◽  
Kadriya Akhmerova ◽  
Alexander Vavaev ◽  
...  

The effects of different factors—such as age, sex, performance level, and athletic shoe features—on postural balance in athletes remain unclear. The main objective of our study is to identify the features of postural stability in athletes of different age, sex, performance level, and using different types of athletic shoes. This study assessed postural stability in athletes (n = 936, 6–47 years) in a normal bipedal stance with eyes open (EO) and eyes closed (EC). Postural stability was evaluated based on the center of pressure (COP), sway area (AS), and velocity (VCP) while standing on a stabiloplatform. Children (6–12 years) and teen athletes (13–17 years) showed reduced AS-EO (p < 0.01) and VCP-EO (p < 0.01) compared to control (n = 225, 7–30 years). In male and female athletes aged 18+, only VCP-EC was lower versus control. In females (13–17 and 18+), VCP-EO and EC were lower than in males (p < 0.05). Only in the Shooting group, the athletes’ performance levels had an effect on VCP-EO (p = 0.020). Long use of rigid athletic shoes with stiff ankle support was associated with reduced posture stability. Postural stability in athletes was mostly influenced by the athlete‘s age, and, to a lesser extent, by their sex, performance level, and athlete shoe features.


2013 ◽  
Vol 103 (4) ◽  
pp. 291-296 ◽  
Author(s):  
Shirley S. M. Fong ◽  
Shamay S. M. Ng

Background: This study aims to investigate the effect of taekwondo footwear on unilateral stance stability and use of postural control strategies and to determine whether taekwondo footwear influences the somatosensory inputs for postural stability and postural strategies in young adults. Methods: A quasi-randomized crossover trial was conducted on 33 healthy young adults at a university research laboratory. Independent variables, including shoe conditions (shoes on and shoes off) and visual conditions (eyes open and eyes closed), were taken into account. The center of gravity (COG) sway velocity in unilateral stance and the strategy scores in the sensory organization test were measured. No intervention was given to the participants. Results: There was no significant interaction between the two factors (the shoe and visual conditions) for COG sway velocities (P = .447) and strategy scores (P = .320). The shoe condition was not significant in either COG sway velocity (P = .484) or strategy score (P = .126). The visual condition was significant for COG sway velocity (P &lt; .001) but not for strategy score (P = .573). The mean ± SD COG sway velocity with eyes open was 0.7° ± 0.2°/sec and with eyes closed was 1.7° ± 0.6°/sec (P &lt; .001). Conclusions: Taekwondo footwear is unlikely to affect somatosensory inputs and balance performance in young adults. (J Am Podiatr Med Assoc 103(4): 291–296, 2013)


2019 ◽  
Vol 40 (13) ◽  
pp. 871-875
Author(s):  
Laura H. Charalambous ◽  
Rachael B. Champion ◽  
Lindsey R. Smith ◽  
Andrew C. S. Mitchell ◽  
Daniel P. Bailey

AbstractHigh amounts of sitting increase the risk of non-communicable disease and mortality. Treadmill desks make it possible to reduce sitting during the desk-based workerʼs day. This study investigated the acute effect on postural stability of interrupting prolonged sitting with an accumulated 2-h of light-intensity treadmill desk walking. Twenty-one sedentary adults participated in this randomized acute crossover trial, with two 6.5 h conditions: 1) uninterrupted sitting and 2) interrupted sitting with accumulated 2 h light-intensity treadmill desk walking. Pre- and post-condition, participants performed four postural stability tests on a pressure plate (bipedal and unipedal standing stance, eyes open and eyes closed). Anteroposterior center of pressure amplitude showed a significant condition x time interaction in bipedal eyes closed (F(1,20)=4.62, p=0.046) and unipedal eyes open (F(1,20)=9.42, p=0.006) tests, and mediolateral center of pressure amplitude in bipedal eyes closed (F(1,20)=6.12, p=0.023) and bipedal eyes open (F(1,12)=5.55, p=0.029) tests. In the significant interactions, amplitude increased pre to post condition in the uninterrupted sitting condition. The accumulated 2 h light-intensity treadmill desk walking ameliorated the negative effect of 6.5 h prolonged sitting on postural sway, supporting workplace treadmill desk use.


2014 ◽  
Vol 30 (3) ◽  
pp. 407-414 ◽  
Author(s):  
Thomas Muehlbauer ◽  
Claude Mettler ◽  
Ralf Roth ◽  
Urs Granacher

The purpose of this study was to compare static balance performance and muscle activity during one-leg standing on the dominant and nondominant leg under various sensory conditions with increased levels of task difficulty. Thirty healthy young adults (age: 23 ± 2 years) performed one-leg standing tests for 30 s under three sensory conditions (ie, eyes open/firm ground; eyes open/foam ground [elastic pad on top of the balance plate]; eyes closed/firm ground). Center of pressure displacements and activity of four lower leg muscles (ie, m. tibialis anterior [TA], m. soleus [SOL], m. gastrocnemius medialis [GAS], m. peroneus longus [PER]) were analyzed. An increase in sensory task difficulty resulted in deteriorated balance performance (P< .001, effect size [ES] = .57−2.54) and increased muscle activity (P< .001, ES = .50−1.11) for all but two muscles (ie, GAS, PER). However, regardless of the sensory condition, one-leg standing on the dominant as compared with the nondominant limb did not produce statistically significant differences in various balance (P> .05, ES = .06−.22) and electromyographic (P> .05, ES = .03−.13) measures. This indicates that the dominant and the nondominant leg can be used interchangeably during static one-leg balance testing in healthy young adults.


2007 ◽  
Vol 23 (3) ◽  
pp. 173-179 ◽  
Author(s):  
Alex J.Y. Lee ◽  
Wei-Hsiu Lin

The purpose of this study was to investigate the influence of gender and somatotypes on single-leg upright standing postural stability in children. A total of 709 healthy children from different schools were recruited to measure the anthropometric somatotypes and the mean radius of center of pressure (COP) on a force platform with their eyes open and eyes closed. The results were that (a) girls revealed significantly smaller mean radius of COP distribution than boys, both in the eyes open and eyes closed conditions, and (b) the mesomorphic, muscular children had significantly smaller mean radius of COP distribution than the endomorphic, fatty children and the ectomorphic, linear children during the eyes closed condition. The explanation for gender differences might be due to the larger body weight in boys. The explanation for somatotype differences might be due to the significantly lower body height and higher portion of muscular profile in the mesomorphic children.


2021 ◽  
Author(s):  
Taro Fujimaki ◽  
Masanori Wako ◽  
Kensuke Koyama ◽  
Naoto Furuya ◽  
Ryoji Shinohara ◽  
...  

AbstractFloating toe (FT) is a frequently seen condition in which a toe is inadequately in contact with the ground. Although toes play an important role in stabilizing standing posture and walking, many aspects of the effects of FT on the body remain unclear. To our knowledge, there have been no reports about the relationship between FT and postural stability, especially in children. This study aimed to clarify the prevalence of FT and its relationship with static postural stability in children. Of the 400 children aged 8 years who participated in our cohort study, 396, who were examined for static postural stability, were included in this study. Postural stability and FT were assessed using a foot pressure plate. The sway path length of the center of pressure and the area of the ellipse defined as the size of the area marked by the center of pressure were measured as an evaluation of static postural stability. We calculated the “floating toe score (FT score: small FT score indicates insufficient ground contact of the toes)” using the image of the plantar footprint obtained at the postural stability measurement. The FT rate was very high at more than 90%, and the FT score in the eyes-closed condition was significantly higher than that in the eyes-open condition in both sexes. The FT score significantly correlated with the center of pressure path and area. Our results suggest that ground contact of the toes is not directly related to static postural stability in children, but it may function to stabilize the body when the condition becomes unstable, such as when the eyes are closed.


2015 ◽  
Vol 9 (1) ◽  
Author(s):  
Ana Silvia Moccellin ◽  
Fernanda G. S. A. Nora ◽  
Paula H. L. Costa ◽  
Patricia Driusso

The hormonal and anatomic changes during pregnancy affect the musculoskeletal system and may lead to instability of static postural control and increased risk of falls. The aim of this study was to analyze changes in static postural control during the three trimesters of pregnancy, using variables derived from the center of pressure. This is a descriptive study in which posturographic tests were applied in four still standing positions, for three trials, with a combination of different visual conditions (eyes open - EO/eyes closed - EC) and support base configurations on 20 non-pregnant women (C) and 13 pregnant women during the gestational period (G1, G2 and G3). For static postural control assessment, a force plate (Bertec®) was used, and the variables analyzed were statokinesigram area, displacement amplitude, displacement velocity and sway frequency. The results demonstrate that, early in pregnancy, the woman's body seems to already change postural control, probably due to increased mobility of the sacroiliac joint and pubic symphysis caused by hormonal factors, and during the trimesters there is a decrease in postural stability, observed as an increase in the elliptical areas, amplitudes of center of pressure displacement and velocity of center of pressure displacement.


2015 ◽  
Vol 9 (1) ◽  
Author(s):  
Ana Silvia Moccellin ◽  
Fernanda G. S. A. Nora ◽  
Paula H. L. Costa ◽  
Patricia Driusso

<p>The hormonal and anatomic changes during pregnancy affect the musculoskeletal system and may lead to instability of static postural control and increased risk of falls. The aim of this study was to analyze changes in static postural control during the three trimesters of pregnancy, using variables derived from the center of pressure. This is a descriptive study in which posturographic tests were applied in four still standing positions, for three trials, with a combination of different visual conditions (eyes open - EO/eyes closed - EC) and support base configurations on 20 non-pregnant women (C) and 13 pregnant women during the gestational period (G1, G2 and G3). For static postural control assessment, a force plate (Bertec®) was used, and the variables analyzed were statokinesigram area, displacement amplitude, displacement velocity and sway frequency. The results demonstrate that, early in pregnancy, the woman's body seems to already change postural control, probably due to increased mobility of the sacroiliac joint and pubic symphysis caused by hormonal factors, and during the trimesters there is a decrease in postural stability, observed as an increase in the elliptical areas, amplitudes of center of pressure displacement and velocity of center of pressure displacement.</p>


Sign in / Sign up

Export Citation Format

Share Document