Gene Therapy for the Treatment of Oral Squamous Cell Carcinoma

2003 ◽  
Vol 82 (1) ◽  
pp. 11-16 ◽  
Author(s):  
S. Xi ◽  
J.R. Grandis

Despite advances in surgery, radiotherapy, and chemotherapy, the survival of patients with oral squamous cell carcinoma has not significantly improved over the past several decades. Treatment options for recurrent or refractory oral cancers are limited. Gene therapy for oral cancer is currently under investigation in clinical trials. The goal of cancer gene therapy is to introduce new genetic material into target cells without toxicity to non-target tissues. This review discusses the techniques used in cancer gene therapy for oral squamous cell carcinoma and summarizes the ongoing strategies that are being evaluated in clinical trials.

2021 ◽  
Author(s):  
Moataz Dowaidar

Gene therapy involves transferring genetic material (DNA or RNA) to repair, regulate or replace genes to cure a disease. One of the most crucial barriers is successful delivery of the targeted gene into the target tissue. Various vector-based approaches have been developed to deliver the transgene to the target cells. In different cancers, numerous of these vectors are being developed for purposes such as immunotherapy, suicide gene therapy, microRNA (miRNA) focused treatment, oncogene silencing, and gene editing using CRISPR/Cas9. This article reviews several alternatives to cancer gene therapy, as well as their preclinical and clinical outcomes, possible limitations, and overall therapy effects. Ways of delivering cancer gene therapy include direct methods for introducing genetic material. Nonviral vectors are easy to manufacture and may be chemically modified to increase their usefulness. Cationic polymers such as Poly-L-Lysine (PLL) and Polyethylenimine (PEI-SS) are the most extensively used polycationic polymers for gene transfer, particularly in vitro. Many RNAi-based therapeutic approaches are approaching the clinical stage, and nanocarriers are likely to play a crucial role in treating specific cancers. In the previous decade, non-viral approaches were used in more than 17 percent of all gene therapy trials. The message is that this is a safe and effective technique for transferring genes to cancer patients who need it to be a safe, successful therapy. Exosomes were developed to carry oncogene-specific short interfering RNA. Sushrut and colleagues revealed that exosomes provide superior carriers of short RNA and prevent tumor growth than liposomes. Inhalation-based gene therapy (aerosol-mediated gene delivery) has gained pace as a feasible treatment approach, especially for lung cancer. Because the intended transgene is steered to specific cells/tissues, this should further increase therapeutic efficiency.


PLoS ONE ◽  
2020 ◽  
Vol 15 (2) ◽  
pp. e0222689
Author(s):  
Chi Thi Kim Nguyen ◽  
Wanlada Sawangarun ◽  
Masita Mandasari ◽  
Kei-ichi Morita ◽  
Hiroyuki Harada ◽  
...  

2022 ◽  
Author(s):  
Sankha Bhattacharya

One of the most prevalent forms of oral cancer is oral squamous cell carcinoma (OSCC), a major cause of morbidity and mortality worldwide. Following a definite oral cancer diagnosis, OSCC is typically treated with a multidisciplinary approach including surgery, chemotherapy, and radiation. In contrast, conventional chemotherapy medicines may be ineffective and have a range of side effects. Many techniques have been proved and authorized for treatment and diagnostics of different types of oral cancer, while others are currently being investigated in clinical trials. This book chapter is aimed to explain the current preclinical status of nano-based techniques to successfully diagnose and treat OSCC. This book chapter would also emphasize recent theranostics approaches utilized to cure OSCC. Nanotechnology also improved cancer biomarker detection, making them faster and more sensitive. To overcome these constraints and improve in situ drug delivery, various nanoparticles have been employed as innovation drivers.


Sign in / Sign up

Export Citation Format

Share Document