scholarly journals The Next Step in Understanding Impaired Reactive Balance Control in People With Stroke: The Role of Defective Early Automatic Postural Responses

2017 ◽  
Vol 31 (8) ◽  
pp. 708-716 ◽  
Author(s):  
Digna de Kam ◽  
Jolanda M. B. Roelofs ◽  
Amber K. B. D. Bruijnes ◽  
Alexander C. H. Geurts ◽  
Vivian Weerdesteyn
Author(s):  
Erika Zemková ◽  
Eva Ďurinová ◽  
Andrej Džubera ◽  
Henrieta Horníková ◽  
Juraj Chochol ◽  
...  

Back pain is one of the most costly disorders among the worldwide working population. Within that population, healthcare workers are at a high risk of back pain. Though they often demonstrate awkward postures and impaired balance in comparison with healthy workers, there is no clear relationship between compensatory postural responses to unpredictable stimuli and the strength of related muscle groups, in particular in individuals with mild to moderate back pain. This paper presents a study protocol that aims to evaluate the relationship between peak anterior to peak posterior displacements of the center of pressure (CoP) and corresponding time from peak anterior to peak posterior displacements of the CoP after sudden external perturbations and peak force during a maximum voluntary isometric contraction of the back and hamstring muscles in physiotherapists with non-specific back pain in its early stages. Participants will complete the Oswestry Disability Questionnaire. Those that rate their back pain on the 0–10 Low Back Pain Scale in the ranges 1–3 (mild pain) and 4–6 (moderate pain) will be considered. They will undergo a perturbation-based balance test and a test of the maximal isometric strength of back muscles and hip extensors. We assume that by adding tests of reactive balance and strength of related muscle groups in the functional testing of physiotherapists, we would be able to identify back problems earlier and more efficiently and therefore address them well before chronic back disorders occur.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11969
Author(s):  
Erika Zemková ◽  
Alena Cepková ◽  
José M. Muyor

Background Although low back fatigue is an important intervening factor for physical functioning among sedentary people, little is known about its possible significance in relation to the spinal posture and compensatory postural responses to unpredictable stimuli. This study investigates the effect of lumbar muscle fatigue on spinal curvature and reactive balance control in response to externally induced perturbations. Methods A group of 38 young sedentary individuals underwent a perturbation-based balance test by applying a 2 kg load release. Sagittal spinal curvature and pelvic tilt was measured in both a normal and Matthiass standing posture both with and without a hand-held 2 kg load, and before and after the Sørensen fatigue test. Results Both the peak anterior and peak posterior center of pressure (CoP) displacements and the corresponding time to peak anterior and peak posterior CoP displacements significantly increased after the Sørensen fatigue test (all at p < 0.001). A lumbar muscle fatigue led to a decrease of the lumbar lordosis in the Matthiass posture while holding a 2 kg load in front of the body when compared to pre-fatigue conditions both without a load (p = 0.011, d = 0.35) and with a 2 kg load (p = 0.000, d = 0.51). Also the sacral inclination in the Matthiass posture with a 2 kg additional load significantly decreased under fatigue when compared to all postures in pre-fatigue conditions (p = 0.01, d = 0.48). Contrary to pre-fatigue conditions, variables of the perturbation-based balance test were closely associated with those of lumbar curvature while standing in the Matthiass posture with a 2 kg additional load after the Sørensen fatigue test (r values in range from −0.520 to −0.631, all at p < 0.05). Conclusion These findings indicate that lumbar muscle fatigue causes changes in the lumbar spinal curvature and this is functionally relevant in explaining the impaired ability to maintain balance after externally induced perturbations. This emphasizes the importance for assessing both spinal posture and reactive balance control under fatigue in order to reveal their interrelations in young sedentary adults and predict any significant deterioration in later years.


2020 ◽  
Vol 11 (1) ◽  
pp. 353
Author(s):  
Thomas Flayols ◽  
Andrea Del Prete ◽  
Majid Khadiv ◽  
Nicolas Mansard ◽  
Ludovic Righetti

Contacts between robots and environment are often assumed to be rigid for control purposes. This assumption can lead to poor performance when contacts are soft and/or underdamped. However, the problem of balancing on soft contacts has not received much attention in the literature. This paper presents two novel approaches to control a legged robot balancing on visco-elastic contacts, and compares them to other two state-of-the-art methods. Our simulation results show that performance heavily depends on the contact stiffness and the noises/uncertainties introduced in the simulation. Briefly, the two novel controllers performed best for soft/medium contacts, whereas “inverse-dynamics control under rigid-contact assumptions” was the best one for stiff contacts. Admittance control was instead the most robust, but suffered in terms of performance. These results shed light on this challenging problem, while pointing out interesting directions for future investigation.


1988 ◽  
Vol 73 (3) ◽  
pp. 648-658 ◽  
Author(s):  
S. P. Moore ◽  
D. S. Rushmer ◽  
S. L. Windus ◽  
L. M. Nashner

1994 ◽  
Vol 72 (6) ◽  
pp. 2892-2902 ◽  
Author(s):  
A. L. Burleigh ◽  
F. B. Horak ◽  
F. Malouin

1. In this study, the interaction between anticipatory postural adjustments for step initiation and automatic postural responses to an external perturbation were investigated by having subjects initiate a voluntary forward step while perturbed by a backward surface translation, which caused forward sway of the body. The postural adjustments for step initiation act to move the body center of mass (COM) forward, whereas the automatic postural responses act to move the COM backward to restore stance equilibrium. Because the postural behaviors are in opposition, we asked whether a temporal hierarchy exists in which automatic postural responses are executed to restore equilibrium and followed by stereotypic postural adjustments for step initiation, or whether the interaction between these two postural behaviors is more dynamic. 2. Lower extremity electromyographs (EMGs), ground reaction forces, and kinematics were recorded from 10 subjects during three conditions: to quantify the anticipatory postural adjustments for step initiation, subjects stepped forward as soon as they felt a proprioceptive cue; to quantify the automatic postural responses to perturbation, subjects maintained stance equilibrium in response to a backward surface translation under both feet; and to quantify the interaction between the postural adjustments for the voluntary step and the automatic responses to the perturbation, subjects were exposed to a backward surface translation and instructed to step forward as soon as they felt the platform begin to move. 3. The anticipatory adjustments for step initiation included tibialis activation [stance limb = 163 +/- 28 (SE) ms; swing limb = 173 +/- 33 ms] and soleus inhibition resulting in center of foot pressure (COP) moving backward and lateral toward the swing limb to propel the COM forward over the stance limb. Subsequently, activation of the swing limb gastrocnemius resulted in heel-off. In contrast, the automatic postural adjustments for maintenance of stance equilibrium during a backward surface translation included activation of soleus and gastrocnemius (104 +/- 23 ms and 115 +/- 14 ms, respectively) resulting in a symmetrical forward displacement of the COP that moved the COM back to its original position with respect to the feet. 4. When a forward step was initiated in response to the translation, the automatic postural responses were reduced in amplitude bilaterally in soleus and in the stance limb gastrocnemius. When present the postural response occurred at the same latency when the goal was to initiate a step as when the goal was to maintain standing.(ABSTRACT TRUNCATED AT 400 WORDS)


2021 ◽  
Vol 13 ◽  
Author(s):  
Jacqueline A. Palmer ◽  
Aiden M. Payne ◽  
Lena H. Ting ◽  
Michael R. Borich

Heightened reliance on the cerebral cortex for postural stability with aging is well-known, yet the cortical mechanisms for balance control, particularly in relation to balance function, remain unclear. Here we aimed to investigate motor cortical activity in relation to the level of balance challenge presented during reactive balance recovery and identify circuit-specific interactions between motor cortex and prefrontal or somatosensory regions in relation to metrics of balance function that predict fall risk. Using electroencephalography, we assessed motor cortical beta power, and beta coherence during balance reactions to perturbations in older adults. We found that individuals with greater motor cortical beta power evoked following standing balance perturbations demonstrated lower general clinical balance function. Individual older adults demonstrated a wide range of cortical responses during balance reactions at the same perturbation magnitude, showing no group-level change in prefrontal- or somatosensory-motor coherence in response to perturbations. However, older adults with the highest prefrontal-motor coherence during the post-perturbation, but not pre-perturbation, period showed greater cognitive dual-task interference (DTI) and elicited stepping reactions at lower perturbation magnitudes. Our results support motor cortical beta activity as a potential biomarker for individual level of balance challenge and implicate prefrontal-motor cortical networks in distinct aspects of balance control involving response inhibition of reactive stepping in older adults. Cortical network activity during balance may provide a neural target for precision-medicine efforts aimed at fall prevention with aging.


2005 ◽  
Vol 85 (6) ◽  
pp. 565-578 ◽  
Author(s):  
Timothy W Cacciatore ◽  
Fay B Horak ◽  
Sharon M Henry

Abstract Background and Purpose. The relationship between abnormal postural coordination and back pain is unclear. The Alexander Technique (AT) aims to improve postural coordination by using conscious processes to alter automatic postural coordination and ongoing muscular activity, and it has been reported to reduce low back pain. This case report describes the use of the AT with a client with low back pain and the observed changes in automatic postural responses and back pain. Case Description. The client was a 49-year-old woman with a 25-year history of left-sided, idiopathic, lumbrosacral back pain. Automatic postural coordination was measured using a force plate during horizontal platform translations and one-legged standing. Outcomes. The client was tested monthly for 4 months before AT lessons and for 3 months after lessons. Before lessons, she consistently had laterally asymmetric automatic postural responses to translations. After AT lessons, the magnitude and asymmetry of her responses and balance improved and her low back pain decreased. Discussion. Further research is warranted to study whether AT lessons improve low back pain-associated abnormalities in automatic postural coordination and whether improving automatic postural coordination helps to reduce low back pain.


Sign in / Sign up

Export Citation Format

Share Document