Design and simulation research of the double-spin folding mechanism based on a suspended missile

Author(s):  
ZH Yuan ◽  
SY Guo ◽  
SN Zhang ◽  
JQ Zhao ◽  
WJ Lu ◽  
...  

Based on the suspension of a missile using folding rotary wings and airbags, in order to improve the basic parameters and motion characteristics of the rotor during the unfolding process and analyze the aerodynamic characteristics of the entire device in the suspension state, after proposing a scheme of double-spin mechanism, the main folding and unfolding mechanism, initial driving device, rotating driving device, and locking mechanism were designed, and the simulation research is studied by the Automatic Dynamic Analysis of Mechanical System and Ansys Fluent Fluid Simulation software, respectively. The results show that the rotation rate was controlled at 41.8 mm/s, the various motion parameters are reasonable, and the operation process is relatively smooth, with high reliability. The speed and pressure value at the tip of the rotor are higher and the aerodynamic disturbance is obvious, which has a great influence on the aerodynamic performance. The speed and pressure distribution of the surrounding flow field is stable, the lift provided is 46 N, and the lift coefficient is 0.55, which can ensure the long-time suspension state of the missile. This paper puts forward a valuable design idea and has practical reference value for the research of the suspended missile.

2013 ◽  
Vol 444-445 ◽  
pp. 385-389 ◽  
Author(s):  
Ji Xiang Shan ◽  
Yong Huang ◽  
Xiao Yong Ma ◽  
Yong Hong Li ◽  
Jie Bai

In wind tunnel tests, the size of the test model is generally much less than the real aircraft, which makes that the Re number during the test is an order of magnitude smaller than the flight Re number. The fixed transition is an important means to improve the test Re number. In the paper, the transition turbulence modelis used to simulate the flow characteristics of the test model (Re=1.5×106), flight model (Re=12×106) and fixed transition model. It is shows that the drag coefficient of the transition model increases and the lift coefficient decreases to compare with the test model and flight model. Compared with the flight model, the turbulent velocity profile of transition model in layer boundary is inadequate, its relative Re number is smaller, so the further amend in the aerodynamic characteristics need to be made.


2014 ◽  
Vol 635-637 ◽  
pp. 598-602
Author(s):  
Jun Fu ◽  
Yuan Tang ◽  
Wen Hua Yuan ◽  
Yi Ma ◽  
Wei Chen ◽  
...  

Swirl chamber diesel engine’s insert piece of channel performance has a great influence on the swirl chamber indoor airflow movement condition. So based on the 175F series bell flat bottom type swirl chamber’s single connection channel improvement, the influence law of swirl chamber indoor air movement during the injection time by the double connection channel angle at the engine rated speed 2600r/min was studied. Simplified boundary conditions to establish its mathematical solution model for the swirl chamber, then the fluid simulation software was used to research the original scheme and double channel with angle of 50 ° and 30 °, 40 °, 60 ° schemes’ swirl chamber indoor air movement. Results show that the angle of 40 ° dual channel form, the loss of the throttle was reduced, and the swirl chamber air velocity increases obviously, the swirl chamber air velocity in injection time up to 125 m/s,which not only increased indoor vortexes energy but also contribute to oil and gas preferably blended, and near the nozzle the temperature lower 20 °C than the original machine, effectively reducing the nozzle heat load.


2021 ◽  
Vol 248 ◽  
pp. 01070
Author(s):  
Chengdong Yuan ◽  
Jinlong Wang ◽  
Yueyue Pan ◽  
Hui Chen ◽  
Xiaqi Zhang

In order to study the influence of wind shear on the aerodynamic characteristics of large wind turbines, taking the 5MW wind turbine blade model published by NREL as the research object, large eddy simulation (LES) of wind turbines was carried out by using XFlow fluid simulation software based on Lattice-Boltzmann method (LBM). WALE turbulence model was used to study wind shear at 3, 11.2 and 25m/s wind speeds. The effect of factors on the axial thrust and torque of wind turbines is compared with the data published by NREL. The results show that the XFlow software based on LBM and LES method has good capturing ability for the eddy wake of wind turbine; wind shear causes the airfoil section of each section of blade to deviate from the best designed attack angle in theory and results in a decrease in torque applied to the wind turbine.


2012 ◽  
Vol 215-216 ◽  
pp. 1033-1037 ◽  
Author(s):  
Xing Jun Hu ◽  
Rui Zhang ◽  
Jian Ye ◽  
Xu Yan ◽  
Zhi Ming Zhao

The aerodynamic characteristics have a great influence on the steering stability and the fuel economics of a high speed vehicle. The diffuser located at the aft part of a car underbody is one of the most important aerodynamic add-on devices. The parameters of the diffuser, including the diffuser angle, the number and the relative position of longitudinal separator (LS), the shape of the end plate and etc, will affect the underbody flow and the wake. Here, diffuser with longitudinal separator of different number and relative position was investigated. Numerical simulation was used to study the aerodynamic characteristics of a simplified sedan with different diffuser of longitudinal separator. The study found aerodynamic coefficient of the car changes little when we change the relative position of diffuser's longitudinal separator. Besides, we also found that increasing the number of the diffuser's longitudinal separator will increase the vehicle's aerodynamic drag coefficient and reduce the vehicle's lift coefficient.


2013 ◽  
Vol 470 ◽  
pp. 495-498
Author(s):  
Liang Han ◽  
Shen Wang Wang ◽  
Wen Zhou Lu ◽  
Feng Xiao

The coating and drying process of Li-ion power battery plays an important role in performance of battery. Its drying system is composed of an air inlet and return pipe, heat exchanger, air nozzle and so on. The air nozzle is a key component of drying system. Whether its design is reasonable or not, it will directly affect the distribution of the velocity, pressure and other factors in the dryer. In this paper, the simulation research of the key parameters of slit air nozzle on the coating and drying of Li-ion power battery will be achieved by using fluid simulation software. And then we determine the slit width of the air nozzle with 3mm, slit angle of air nozzle with 60° on the basis of the simulation results.


Author(s):  
Jie Gao ◽  
Chunde Tao ◽  
Dongchen Huo ◽  
Guojie Wang

Marine, industrial, turboprop and turboshaft gas turbine engines use nonaxisymmetric exhaust volutes for flow diffusion and pressure recovery. These processes result in a three-dimensional complex turbulent flow in the exhaust volute. The flows in the axial turbine and nonaxisymmetric exhaust volute are closely coupled and inherently unsteady, and they have a great influence on the turbine and exhaust aerodynamic characteristics. Therefore, it is very necessary to carry out research on coupled axial turbine and nonaxisymmetric exhaust volute aerodynamics, so as to provide reference for the high-efficiency turbine-volute designs. This paper summarizes and analyzes the recent advances in the field of coupled axial turbine and nonaxisymmetric exhaust volute aerodynamics for turbomachinery. This review covers the following topics that are important for turbine and volute coupled designs: (1) flow and loss characteristics of nonaxisymmetric exhaust volutes, (2) flow interactions between axial turbine and nonaxisymmetric exhaust volute, (3) improvement of turbine and volute performance within spatial limitations and (4) research methods of coupled turbine and exhaust volute aerodynamics. The emphasis is placed on the turbine-volute interactions and performance improvement. We also present our own insights regarding the current research trends and the prospects for future developments.


Author(s):  
Александр Анатольевич Дектерев ◽  
Артем Александрович Дектерев ◽  
Юрий Николаевич Горюнов

Исследование направлено на разработку и апробацию методики численного моделирования аэродинамических и энергетических характеристик циклоидального ротора. За основу взята конфигурация ротора IAT21 L3. Для нее с использованием CFD-пакета ANSYS Fluent построена математическая модель и выполнен расчет. Проанализировано влияние скорости набегающего потока воздуха на движущийся ротор. Математическая модель и полученные результаты исследования могут быть использованы при создании летательных аппаратов с движителями роторного типа. This article addresses the study of the aerodynamic and energy characteristics of a cycloidal rotor subject to the influence of the incoming flow. Cycloidal rotor is one of the perspective devices that provide movement of aircrafts. Despite the fact that the concept of a cycloidal rotor arose in the early twentieth century, the model of a full-scale aircraft has not been yet realized. Foreign scientists have developed models of aircraft ranging in weight from 0.06 to 100 kg. The method of numerical calculation of the cycloidal rotor from the article [1] is considered and realized in this study. The purpose of study was the development and testing of a numerical simulation method for the cycloidal rotor and study aerodynamic and energy characteristics of the rotor in the hovering mode and under the influence of the oncoming flow. The aerodynamic and energy characteristics of the cycloidal rotor, rotating at a speed of 1000 rpm with incoming flow on it with velocities of 20-80 km/h, were calculated. The calculation results showed a directly proportional increase of thrust with an increase of the incoming on the rotor flow velocity, but the power consumed by the rotor was also increased. Increase of the incoming flow velocity leads to the proportional increasing of the lift coefficient and the coefficient of drag. Up to a speed of 80 km/h, an increase in thrust and power is observed; at higher speeds, there is a predominance of nonstationary effects and difficulties in estimating the aerodynamic characteristics of the rotor. In the future, it is planned to consider the 3D formulation of the problem combined with possibility of the flow coming from other sides.


Author(s):  
C. P. van Dam ◽  
C. Bauer ◽  
D. T. Yen Nakafuji

Micro-electro-mechanical (MEM) translational tabs are introduced for active lift control on aircraft. These tabs are mounted near the trailing edge of lifting surfaces such as aircraft wings and tails, deploy approximately normal to the surface, and have a maximum deployment height on the order of one percent of the section chord. Deployment of the tab effectively changes the sectional camber, thereby changing the aerodynamic characteristics of a lifting surface. Tabs with said deployment height generate a change in the section lift coefficient of approximately ±0.3. The microtab design and the techniques used to fabricate and test the tabs are presented.


2015 ◽  
Vol 798 ◽  
pp. 596-601
Author(s):  
R.F. Francisco Reis ◽  
Guilherme A. Santana ◽  
Paulo Iscold ◽  
Carlos A. Cimini

This paper will present the development of a simple subsonic boundary layer method suitable to be used coupled with panel methods in order to estimate the aerodynamic characteristics, including viscous drag and maximum lift coefficient, of 3D wings. The proposed method does not require viscous-inviscid iterations and is based on classical integral bi-dimensional boundary layer theory using Thwaites and Head ́s models with bi-dimensional empirical corrections applied to each wing strip being therefor robust and efficient to be used in the early conceptual stage of aircraft design. Presented results are compared to the Modified CS Method in an IBL scheme and experimental data and are shown to provide good results.


Sign in / Sign up

Export Citation Format

Share Document