scholarly journals Efficient and secure attribute-based heterogeneous online/offline signcryption for body sensor networks based on blockchain

2019 ◽  
Vol 15 (9) ◽  
pp. 155014771987565 ◽  
Author(s):  
Jawaid Iqbal ◽  
Arif Iqbal Umar ◽  
Noorul Amin ◽  
Abdul Waheed

In body sensor networks, both wearable and implantable biosensors are deployed in a patient body to monitor and collect patient health record information. The health record information is then transmitted toward the medical server via a base station for analysis, diagnosis, and treatment by medical experts. Advancement in wireless technology although improves the patient health–monitoring mechanism, but still there are some limitations regarding security, privacy, and efficiency due to open wireless channel and limited resources of body sensor networks. To overcome these limitations, we have proposed an efficient and secure heterogeneous scheme for body sensor networks, in which biosensor nodes use a certificate-less cryptography environment to resolve the key escrow and certificate-management problems, while MS uses a public key infrastructure environment to enhance the scalability of the networks. Furthermore, we design an online/offline signcryption method to overcome the burden on biosensor nodes. We split the signcryption process into two phases: offline phase and online phase. In the offline phase, the major operations are computed without prior knowledge of patient data. While in online phase, the minor operations are computed when patient data are known. Besides, we have used a new hybrid blockchain technology approach for the secure transmission of patient information along with attributes stored in the medical server toward the cloud that provides ease of patient data access remotely from anywhere by the authorized users and data backup in case of medical server failure. Moreover, hybrid blockchain provides advantages of interoperability, transparency traceability, and universal access. The formal security analysis of the proposed scheme is proved in the standard model, and informal security assures that our scheme provides resistance against possible attacks. As compared to other existing schemes, our proposed scheme consumes fewer resources and efficient in terms of processing cost, transmission overhead, and energy consumption.

Author(s):  
José A. Afonso ◽  
Pedro Macedo ◽  
Luis A. Rocha ◽  
José H. Correia

Conventional wired body sensor networks have been used in hospitals over the last decade; however, the tethered operation restricts the mobility of the patients. In the scenario considered in this chapter, the signals collected from the patients’ bodies are wirelessly transmitted to a base station, and then delivered to a remote diagnosis centre through a communication infrastructure, enabling full mobility of the patient in the coverage area of the wireless network. Healthcare applications require the network to satisfy demanding requirements in terms of quality of service (QoS) and, at the same time, minimize the energy consumption of the sensor nodes. The traffic generated by data-intensive healthcare applications may lead to frequent collisions between sensor nodes and the consequent loss of data, if conventional MAC protocols for wireless sensor networks are used. Therefore, this chapter presents LPRT and CCMAC, two MAC protocols that intend to satisfy the QoS requirements of these applications, but differ in the wireless topology used. Experimental results for an implementation of the LPRT using an IEEE 802.15.4 compliant wireless sensor platform are presented, as well as simulation results comparing the performance of direct communication (between wireless body sensor nodes and the base station) with two other approaches relying on a cluster-based topology (similar to the one proposed by the authors of LEACH), which demonstrate the benefits of using a cluster-based topology on wireless healthcare applications.


2020 ◽  
Vol 16 (6) ◽  
pp. 155014772092577 ◽  
Author(s):  
Shahwar Ali ◽  
A Humaria ◽  
M Sher Ramzan ◽  
Imran Khan ◽  
Syed M Saqlain ◽  
...  

In wireless sensor networks, the sensors transfer data through radio signals to a remote base station. Sensor nodes are used to sense environmental conditions such as temperature, strain, humidity, sound, vibration, and position. Data security is a major issue in wireless sensor networks since data travel over the naturally exposed wireless channel where malicious attackers may get access to critical information. The sensors in wireless sensor networks are resource-constrained devices whereas the existing data security approaches have complex security mechanisms with high computational and response times affecting the network lifetime. Furthermore, existing systems, such as secure efficient encryption algorithm, use the Diffie–Hellman approach for key generation and exchange; however, Diffie–Hellman is highly vulnerable to the man-in-the-middle attack. This article introduces a data security approach with less computational and response times based on a modified version of Diffie–Hellman. The Diffie–Hellman has been modified to secure it against attacks by generating a hash of each value that is transmitted over the network. The proposed approach has been analyzed for security against various attacks. Furthermore, it has also been analyzed in terms of encryption/decryption time, computation time, and key generation time for different sizes of data. The comparative analysis with the existing approaches shows that the proposed approach performs better in most of the cases.


Author(s):  
John J. L. Chelsom

The cityEHR Electronic Health Records system is a pure XML application for managing patient health records, using open standards. The structure of the health record follows the definition in the ISO 13606 standard, which is used in cityEHR as a basis for clinicians to develop specific information models for the patient data they gather for clinical and research purposes. In cityEHR these models are represented as OWL/XML ontologies. The most widely adopted approach to modelling patient data in accordance with ISO 13606 is openEHR, which uses its own Archetype Definition Language to specify the information models used in compliant health records systems. This paper describes a translator for the Archetype Definition Language, implemented using XSLT and XML pipeline processing, which generates OWL/XML suitable for use in cityEHR.


2017 ◽  
Author(s):  
Lina Bouayad ◽  
Anna Ialynytchev ◽  
Balaji Padmanabhan

BACKGROUND A new generation of user-centric information systems is emerging in health care as patient health record (PHR) systems. These systems create a platform supporting the new vision of health services that empowers patients and enables patient-provider communication, with the goal of improving health outcomes and reducing costs. This evolution has generated new sets of data and capabilities, providing opportunities and challenges at the user, system, and industry levels. OBJECTIVE The objective of our study was to assess PHR data types and functionalities through a review of the literature to inform the health care informatics community, and to provide recommendations for PHR design, research, and practice. METHODS We conducted a review of the literature to assess PHR data types and functionalities. We searched PubMed, Embase, and MEDLINE databases from 1966 to 2015 for studies of PHRs, resulting in 1822 articles, from which we selected a total of 106 articles for a detailed review of PHR data content. RESULTS We present several key findings related to the scope and functionalities in PHR systems. We also present a functional taxonomy and chronological analysis of PHR data types and functionalities, to improve understanding and provide insights for future directions. Functional taxonomy analysis of the extracted data revealed the presence of new PHR data sources such as tracking devices and data types such as time-series data. Chronological data analysis showed an evolution of PHR system functionalities over time, from simple data access to data modification and, more recently, automated assessment, prediction, and recommendation. CONCLUSIONS Efforts are needed to improve (1) PHR data quality through patient-centered user interface design and standardized patient-generated data guidelines, (2) data integrity through consolidation of various types and sources, (3) PHR functionality through application of new data analytics methods, and (4) metrics to evaluate clinical outcomes associated with automated PHR system use, and costs associated with PHR data storage and analytics.


Author(s):  
Abdul Rahaman Wahab Sait ◽  
◽  
M. Ilayaraja ◽  

Wireless sensor networks (WSN) encompass numerous sensor nodes deployed in the physical environment to sense parameters and transmit to the base station (BS). Since the nodes in WSN communicate via a wireless channel, security remains a significant issue that needs to be resolved. The choice of cluster heads (CHs) is critical to achieving secure data transmission in WSN. In this aspect, this article presents a novel trust-aware mothflame optimization-based secure clustering (TAMFO-SC) technique for WSN. The goal of the TAMFO-SC technique is to determine the trust level of the nodes and determine the secure CHs. The proposed TAMFO-SC technique initially determines the nodes' trust level, and the node with maximum trust factor can be chosen as CHs. In addition, the TAMFO-SC technique derives a fitness function using two parameters, namely residual energy and trust level. The inclusion of trust level in the CH selection process helps to accomplish security in WSN. A comprehensive experimental analysis exhibits the promising performance of the TAMFO-SC technique over the other compared methods.


Author(s):  
Meenakshi Tripathi ◽  
M. S. Gaur ◽  
Vijay Laxmi ◽  
Ramesh Battula

Security is a prime concern in the resource constrained wireless sensor networks. Traditional cryptographic mechanisms cannot be used with these networks due to their limited battery. Clustering is one of the popular methods to improve the energy efficiency of WSN. In this chapter, the authors propose a secure routing protocol for cluster-based wireless sensor networks. A hierarchical topology is formed by the base station, which is also responsible for distributing the cryptographic keys among the nodes. Security analysis of the proposed protocol is done against various security attacks. The efficiency of the proposed protocol is explained through mathematical calculations and simulations. The proposed protocol also performs better than other existing secure protocols for cluster-based WSN regarding battery life and security overhead.


Author(s):  
Hassine Moungla ◽  
Nora Touati ◽  
Ahmed Mehaoua

Wireless Body Sensor Networks (WBSNs), like any other sensor networks, suffer from limited energy and are highly distributed network, where its nodes organize by themselves and each of them has the flexibility of collecting and transmitting patient biomedical information to a sink. When a knowledge was sent to a sink from a path that doesn't have a definite basis, the routing is a crucial challenge in Wireless Body Area Sensor Networks. Furthermore, reliability and routing delay are the considerable factors in these types of networks. More attention should be given to the energy routing issue and frequent topology's change in WBSNs. That increases the dynamics of network topology, and complicates the relay selection process in cooperative communications. Unreliable communication over the wireless channel complicates communication protocols and results in low data yield (Stathopoulos 2005). The deployment sensors step is a crucial and complex task due to several independent objectives and constraints. This paper presents a Min-Max multi-commodity flow model for WBSNs which allows preventing sensor node saturation and taking best action against reliability and the path loss, by imposing an equilibrium use of sensors during the routing process. This model is based on the authors' optimal sensors deployment method for WBSNs. Simulations results show that the algorithm balances the energy consumption of nodes effectively and maximize the network lifetime. It will meet the enhanced WBSNs requirements, including better delivery ratio, less reliable routing overhead.


Sign in / Sign up

Export Citation Format

Share Document