scholarly journals An efficient cryptographic technique using modified Diffie–Hellman in wireless sensor networks

2020 ◽  
Vol 16 (6) ◽  
pp. 155014772092577 ◽  
Author(s):  
Shahwar Ali ◽  
A Humaria ◽  
M Sher Ramzan ◽  
Imran Khan ◽  
Syed M Saqlain ◽  
...  

In wireless sensor networks, the sensors transfer data through radio signals to a remote base station. Sensor nodes are used to sense environmental conditions such as temperature, strain, humidity, sound, vibration, and position. Data security is a major issue in wireless sensor networks since data travel over the naturally exposed wireless channel where malicious attackers may get access to critical information. The sensors in wireless sensor networks are resource-constrained devices whereas the existing data security approaches have complex security mechanisms with high computational and response times affecting the network lifetime. Furthermore, existing systems, such as secure efficient encryption algorithm, use the Diffie–Hellman approach for key generation and exchange; however, Diffie–Hellman is highly vulnerable to the man-in-the-middle attack. This article introduces a data security approach with less computational and response times based on a modified version of Diffie–Hellman. The Diffie–Hellman has been modified to secure it against attacks by generating a hash of each value that is transmitted over the network. The proposed approach has been analyzed for security against various attacks. Furthermore, it has also been analyzed in terms of encryption/decryption time, computation time, and key generation time for different sizes of data. The comparative analysis with the existing approaches shows that the proposed approach performs better in most of the cases.

Author(s):  
Abdul Rahaman Wahab Sait ◽  
◽  
M. Ilayaraja ◽  

Wireless sensor networks (WSN) encompass numerous sensor nodes deployed in the physical environment to sense parameters and transmit to the base station (BS). Since the nodes in WSN communicate via a wireless channel, security remains a significant issue that needs to be resolved. The choice of cluster heads (CHs) is critical to achieving secure data transmission in WSN. In this aspect, this article presents a novel trust-aware mothflame optimization-based secure clustering (TAMFO-SC) technique for WSN. The goal of the TAMFO-SC technique is to determine the trust level of the nodes and determine the secure CHs. The proposed TAMFO-SC technique initially determines the nodes' trust level, and the node with maximum trust factor can be chosen as CHs. In addition, the TAMFO-SC technique derives a fitness function using two parameters, namely residual energy and trust level. The inclusion of trust level in the CH selection process helps to accomplish security in WSN. A comprehensive experimental analysis exhibits the promising performance of the TAMFO-SC technique over the other compared methods.


2015 ◽  
Vol 2015 ◽  
pp. 1-10
Author(s):  
Chin-Ling Chen ◽  
Chih-Cheng Chen ◽  
De-Kui Li

In recent years, wireless sensor network (WSN) applications have tended to transmit data hop by hop, from sensor nodes through cluster nodes to the base station. As a result, users must collect data from the base station. This study considers two different applications: hop by hop transmission of data from cluster nodes to the base station and the direct access to cluster nodes data by mobile users via mobile devices. Due to the hardware limitations of WSNs, some low-cost operations such as symmetric cryptographic algorithms and hash functions are used to implement a dynamic key management. The session key can be updated to prevent threats of attack from each communication. With these methods, the data gathered in wireless sensor networks can be more securely communicated. Moreover, the proposed scheme is analyzed and compared with related schemes. In addition, an NS2 simulation is developed in which the experimental results show that the designed communication protocol is workable.


Wireless Sensor Networks (WSN) consists of a large amount of nodes connected in a self-directed manner. The most important problems in WSN are Energy, Routing, Security, etc., price of the sensor nodes and renovation of these networks is reasonable. The sensor node tools included a radio transceiver with an antenna and an energy source, usually a battery. WSN compute the environmental conditions such as temperature, sound, pollution levels, etc., WSN built the network with the help of nodes. A sensor community consists of many detection stations known as sensor nodes, every of which is small, light-weight and portable. Nodes are linked separately. Each node is linked into the sensors. In recent years WSN has grow to be an essential function in real world. The data’s are sent from end to end multiple nodes and gateways, the data’s are connected to other networks such as wireless Ethernet. MGEAR is the existing mechanism. It works with the routing and energy consumption. The principal problem of this work is choosing cluster head, and the selection is based on base station, so the manner is consumes energy. In this paper, develop the novel based hybrid protocol Low Energy Aware Gateway (LEAG). We used Zigbee techniques to reduce energy consumption and routing. Gateway is used to minimize the energy consumption and data is send to the base station. Nodes are used to transmit the data into the cluster head, it transmit the data into gateway and gateway compress and aggregate the data then sent to the base station. Simulation result shows our proposed mechanism consumes less energy, increased throughput, packet delivery ration and secure routing when compared to existing mechanism (MGEAR).


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Fan Chao ◽  
Zhiqin He ◽  
Renkuan Feng ◽  
Xiao Wang ◽  
Xiangping Chen ◽  
...  

Tradition wireless sensor networks (WSNs) transmit data by single or multiple hops. However, some sensor nodes (SNs) close to a static base station forward data more frequently than others, which results in the problem of energy holes and makes networks fragile. One promising solution is to use a mobile node as a mobile sink (MS), which is especially useful in energy-constrained networks. In these applications, the tour planning of MS is a key to guarantee the network performance. In this paper, a novel strategy is proposed to reduce the latency of mobile data gathering in a WSN while the routing strategies and tour planning of MS are jointly optimized. First, the issue of network coverage is discussed before the appropriate number of clusters being calculated. A dynamic clustering scheme is then developed where a virtual cluster center is defined as the MS sojourn for data collection. Afterwards, a tour planning of MS based on prediction is proposed subject to minimizing the traveling distance to collect data. The proposed method is simulated in a MATLAB platform to show the overall performance of the developed system. Furthermore, the physical tests on a test rig are also carried out where a small WSN based on an unmanned aerial vehicle (UAV) is developed in our laboratory. The test results validate the feasibility and effectiveness of the method proposed.


Author(s):  
Naveen Chilamkurti ◽  
Sohail Jabbar ◽  
Abid Ali Minhas

Network layer functionalists are of core importance in the communication process and so the routing with energy aware trait is indispensable for improved network performance and increased network lifetime. Designing of protocol at this under discussion layer must consider the aforementioned factors especially for energy aware routing process. In wireless sensor networks there may be hundreds or thousands of sensor nodes communicating with each other and with the base station, which consumes more energy in exchanging data and information with the additive issues of unbalanced load and intolerable faults. Two main types of network architectures for sensed data dissemination from source to destination exist in the literature; Flat network architecture, clustered network architecture. In flat architecture based networks, uniformity can be seen since all the network nodes work in a same mode and generally do not have any distinguished role.


2020 ◽  
pp. 372-399
Author(s):  
Naveen Chilamkurti ◽  
Sohail Jabbar ◽  
Abid Ali Minhas

Network layer functionalists are of core importance in the communication process and so the routing with energy aware trait is indispensable for improved network performance and increased network lifetime. Designing of protocol at this under discussion layer must consider the aforementioned factors especially for energy aware routing process. In wireless sensor networks there may be hundreds or thousands of sensor nodes communicating with each other and with the base station, which consumes more energy in exchanging data and information with the additive issues of unbalanced load and intolerable faults. Two main types of network architectures for sensed data dissemination from source to destination exist in the literature; Flat network architecture, clustered network architecture. In flat architecture based networks, uniformity can be seen since all the network nodes work in a same mode and generally do not have any distinguished role.


Author(s):  
C. R. Bharathi ◽  
Alapati Naresh ◽  
Arepalli Peda Gopi ◽  
Lakshman Narayana Vejendla

In wireless sensor networks (WSN), the majority of the inquiries are issued at the base station. WSN applications frequently require collaboration among countless sensor nodes in a network. One precedent is to persistently screen a region and report occasions. A sensor node in a WSN is initially allocated with an energy level, and based on the tasks of that sensor node, energy will be reduced. In this chapter, two proposed methods for secure network cluster formation and authentication are discussed. When a network is established then all the nodes in it must register with cluster head and then authentication is performed. The selection of cluster head is done using a novel selection algorithm and for authenticating the nodes. Also, a novel algorithm for authentication is used in this chapter. The validation and authorization of nodes are carried over by managing the keys in WSN. The results have been analyzed using NS2 simulator with an aid of list of relevant parameters.


2020 ◽  
Vol 11 (1) ◽  
pp. 36-48
Author(s):  
Amiya Bhusan Bagjadab ◽  
Sushree Bibhuprada B. Priyadarshini

Wireless sensor networks are commonly used to monitor certain regions and to collect data for several application domains. Generally, in wireless sensor networks, data are routed in a multi-hop fashion towards a static sink. In this scenario, the nodes closer to the sink become heavily involved in packet forwarding, and their battery power is exhausted rapidly. This article proposes that a special node (i.e., mobile sink) will move in the specified region and collect the data from the sensors and transmit it to the base station such that the communication distance of the sensors will be reduced. The aim is to provide a track for the sink such that it covers maximum sensor nodes. Here, the authors compared two tracks theoretically and in the future will try to simulate the two tracks for the sink movement so as to identify the better one.


Author(s):  
Saloni Dhiman ◽  
Deepti Kakkar ◽  
Gurjot Kaur

Wireless sensor networks (WSNs) consist of several sensor nodes (SNs) that are powered by battery, so their lifetime is limited, which ultimately affects the lifespan and hence performance of the overall networks. Till now many techniques have been developed to solve this problem of WSN. Clustering is among the effective technique used for increasing the network lifespan. In this chapter, analysis of multi-hop routing protocol based on grid clustering with different selection criteria is presented. For analysis, the network is divided into equal-sized grids where each grid corresponds to a cluster and is assigned with a grid head (GH) responsible for collecting data from each SN belonging to respective grid and transferring it to the base station (BS) using multi-hop routing. The performance of the network has been analyzed for different position of BS, different number of grids, and different number of SNs.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Mohammadjavad Abbasi ◽  
Muhammad Shafie Bin Abd Latiff ◽  
Hassan Chizari

Wireless sensor networks (WSNs) include sensor nodes in which each node is able to monitor the physical area and send collected information to the base station for further analysis. The important key of WSNs is detection and coverage of target area which is provided by random deployment. This paper reviews and addresses various area detection and coverage problems in sensor network. This paper organizes many scenarios for applying sensor node movement for improving network coverage based on bioinspired evolutionary algorithm and explains the concern and objective of controlling sensor node coverage. We discuss area coverage and target detection model by evolutionary algorithm.


Sign in / Sign up

Export Citation Format

Share Document