Secure and Energy-Efficient Routing for Cluster-Based Wireless Sensor Networks

Author(s):  
Meenakshi Tripathi ◽  
M. S. Gaur ◽  
Vijay Laxmi ◽  
Ramesh Battula

Security is a prime concern in the resource constrained wireless sensor networks. Traditional cryptographic mechanisms cannot be used with these networks due to their limited battery. Clustering is one of the popular methods to improve the energy efficiency of WSN. In this chapter, the authors propose a secure routing protocol for cluster-based wireless sensor networks. A hierarchical topology is formed by the base station, which is also responsible for distributing the cryptographic keys among the nodes. Security analysis of the proposed protocol is done against various security attacks. The efficiency of the proposed protocol is explained through mathematical calculations and simulations. The proposed protocol also performs better than other existing secure protocols for cluster-based WSN regarding battery life and security overhead.

Wireless Sensor Networks (WSN) consists of a large amount of nodes connected in a self-directed manner. The most important problems in WSN are Energy, Routing, Security, etc., price of the sensor nodes and renovation of these networks is reasonable. The sensor node tools included a radio transceiver with an antenna and an energy source, usually a battery. WSN compute the environmental conditions such as temperature, sound, pollution levels, etc., WSN built the network with the help of nodes. A sensor community consists of many detection stations known as sensor nodes, every of which is small, light-weight and portable. Nodes are linked separately. Each node is linked into the sensors. In recent years WSN has grow to be an essential function in real world. The data’s are sent from end to end multiple nodes and gateways, the data’s are connected to other networks such as wireless Ethernet. MGEAR is the existing mechanism. It works with the routing and energy consumption. The principal problem of this work is choosing cluster head, and the selection is based on base station, so the manner is consumes energy. In this paper, develop the novel based hybrid protocol Low Energy Aware Gateway (LEAG). We used Zigbee techniques to reduce energy consumption and routing. Gateway is used to minimize the energy consumption and data is send to the base station. Nodes are used to transmit the data into the cluster head, it transmit the data into gateway and gateway compress and aggregate the data then sent to the base station. Simulation result shows our proposed mechanism consumes less energy, increased throughput, packet delivery ration and secure routing when compared to existing mechanism (MGEAR).


Sensors ◽  
2019 ◽  
Vol 19 (8) ◽  
pp. 1835 ◽  
Author(s):  
Ruan ◽  
Huang

Since wireless sensor networks (WSNs) are powered by energy-constrained batteries, many energy-efficient routing protocols have been proposed to extend the network lifetime. However, most of the protocols do not well balance the energy consumption of the WSNs. The hotspot problem caused by unbalanced energy consumption in the WSNs reduces the network lifetime. To solve the problem, this paper proposes a PSO (Particle Swarm Optimization)-based uneven dynamic clustering multi-hop routing protocol (PUDCRP). In the PUDCRP protocol, the distribution of the clusters will change dynamically when some nodes fail. The PSO algorithm is used to determine the area where the candidate CH (cluster head) nodes are located. The adaptive clustering method based on node distribution makes the cluster distribution more reasonable, which balances the energy consumption of the network more effectively. In order to improve the energy efficiency of multi-hop transmission between the BS (Base Station) and CH nodes, we also propose a connecting line aided route construction method to determine the most appropriate next hop. Compared with UCCGRA, multi-hop EEBCDA, EEMRP, CAMP, PSO-ECHS and PSO-SD, PUDCRP prolongs the network lifetime by between 7.36% and 74.21%. The protocol significantly balances the energy consumption of the network and has better scalability for various sizes of network.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Aaqil Somauroo ◽  
Vandana Bassoo

Due to its boundless potential applications, Wireless Sensor Networks have been subject to much research in the last two decades. WSNs are often deployed in remote environments making replacement of batteries not feasible. Low energy consumption being of prime requisite led to the development of energy-efficient routing protocols. The proposed routing algorithms seek to prolong the lifetime of sensor nodes in the relatively unexplored area of 3D WSNs. The schemes use chain-based routing technique PEGASIS as basis and employ genetic algorithm to build the chain instead of the greedy algorithm. Proposed schemes will incorporate an energy and distance aware CH selection technique to improve load balancing. Clustering of the network is also implemented to reduce number of nodes in a chain and hence reduce delay. Simulation of our proposed protocols is carried out for homogeneous networks considering separately cases for a static base-station inside and outside the network. Results indicate considerable improvement in lifetime over PEGASIS of 817% and 420% for base station inside and outside the network respectively. Residual energy and delay performance are also considered.


2014 ◽  
Vol 626 ◽  
pp. 20-25
Author(s):  
K. Kalaiselvi ◽  
G.R. Suresh

In wireless sensor networks Energy-efficient routing is an important issue due to the limited battery power within the network, Energy consumption is one of the important performance factors. Specifically for the election of cluster head selection and distance between the cluster head node and base station. The main objective of this proposed system is to reduce the energy consumption and prolong the network lifetime. This paper introduces a new clustering algorithm for energy efficient routing based on a cluster head selection


2020 ◽  
Vol 13 (3) ◽  
pp. 353-361
Author(s):  
Veervrat Singh Chandrawanshi ◽  
Rajiv Kumar Tripathi ◽  
Rahul Pachauri ◽  
Nafis Uddin Khan

Background:Wireless Sensor Networks (WSNs) refer to a group of sensors used for sensing and monitoring the physical data of the environment and organizing the collected data at a central location. These networks enjoy several benefits because of their lower cost, smaller size and smarter sensors. However, a limited source of energy and lifetime of the sensors have emerged as the major setbacks for these networks.Methods:In this work, an energy-aware algorithm has been proposed for the transmission of variable data packets from sensor nodes to the base station according to the balanced energy consumption by all the nodes of a WSN.Results:Obtained simulation results verify that the lifetime of the sensor network is significantly enhanced in comparison to other existing clustering based routing algorithm.Conclusion:The proposed algorithm is comparatively easy to implement and achieves a higher gain in the lifetime of a WSN while keeping the throughput nearly same as LEACH protocol.


2018 ◽  
Vol 7 (2.14) ◽  
pp. 533
Author(s):  
Abhilasha Jain ◽  
Ashok Kumar Goel

In the past few decades, Wireless sensor networks have exhibited a significant amount of growth and have been used in various applications like traffic control, environment monitoring etc. It comprises an accumulation of sensor nodes that sense the data from their surroundings and relay it to the base station. The network suffers from the limited energy constraints since the sensor nodes are mobile nodes and they run out of battery after a considerable amount of time. To overcome this, a certain level of heterogeneity is introduced among the nodes in terms of energy consumption to sustain the overall network lifetime. Various protocols are developed to prolong the network longevity. Among those, PEGASIS (Power-Efficient Gathering in Sensor Information Systems) and LEACH (Low- Energy Adaptive Clustering Hierarchy) are the significant ones, which ensures power-efficient gathering of the data in the sensor networks. This paper attempts to discuss the different aspects of PEGASIS and LEACH and their advantages and disadvantages in detail.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Jia Yanfei ◽  
Chen Guangda ◽  
Zhao Liquan

In heterogeneous wireless sensor networks, sensor nodes are randomly distributed in some regions. In some applications, they may be randomly distributed in different regions. Besides, nodes with the same type have almost the same probability to be selected as cluster head. The cluster head will consume much more energy to receive and transmit data than the other nodes. If nodes with little residual energy have been elected as cluster heads, it will affect the efficiency of the network due to its early death. An improved energy-efficient routing protocol is proposed for heterogeneous wireless sensor networks. Firstly, it supposes that the different types of nodes are distributed in different zones. Secondly, by improving the threshold, nodes with large residual energy have a greater possibility of becoming cluster heads. In the end, it designs a mixed data transmission method. The cluster heads of supper nodes and advance nodes directly transmit data to the base station. The normal nodes adopt single hops and multiple hops mixed methods to transmit data. This can minimize the energy of the communication from cluster head to base station. Simulation results show that this algorithm has achieved a longer lifetime for the wireless sensor network than stable election protocol and threshold-sensitive stable election protocol algorithm.


Wireless sensor networks (WSN) are responsible on improving or updating and distributing security commands for the data discovery and the dissemination protocols to update the sensor Node configuration parameters. There are two drawbacks to all current data discovery and the dissemination protocols. First, they are based on the centralized strategy; the data item can only be distributed by the base station. For emerging multi-owner-multi-user WSNs, such a strategy is not appropriate. Furthermore, those conventions have not been proposed in view of security and in this manner, assailants can promptly dispatch endeavors to harm the system. This article proposes the first-named convention (Sec-DiDrip) for secure and circulated data discovery and dissemination.


2021 ◽  
Vol 11 (4) ◽  
pp. 4082-4095
Author(s):  
G. Chenna Kesava Reddy ◽  
Dr.A.A. Ansari ◽  
Dr.S. China Venkateswarlu

Energy efficiency is a significant issue in portable wireless networks since the battery life of versatile terminals is restricted. Protection of battery power has been tended to utilizing numerous procedures. Wireless sensor networks (WSNs), framed by various little gadgets fit for detecting, processing, and wireless correspondence are arising as a progressive innovation, with applications in different territories. The novel highlights of wireless sensor networks have carried new difficulties and issues to the field of conveyed and communitarian data preparing. In the light of the importance of reducing operating consumpt and maintaining cellular network profitability, energy efficiency in cell networks has received a crucial consideration from both scholars and the business, despite the fact that these networks are “green communication.” Since the base station is the most important energy buyer in the business, efforts have been undertaken to review the use of the base station and to identify ways to energy efficiency improvements. The trade-offs between energy utilization and throughput, under nearby just as under helpful detecting, are portrayed. The Energy efficient tradeoffs have been arranged dependent on every convention layer and examined its effect in the organization energy efficiency.


Sign in / Sign up

Export Citation Format

Share Document