scholarly journals Physical layer security in cognitive NOMA sensor networks with full-duplex technique

2021 ◽  
Vol 17 (12) ◽  
pp. 155014772110590
Author(s):  
Zhihui Shang ◽  
Tao Zhang ◽  
Liwei Tao ◽  
Zhongwu Xiang ◽  
Weiwei Yang

This article studies the physical layer security in a downlink full-duplex cognitive non-orthogonal multiple access sensor networks (FD-C-NOMA). Compared with the existing works, this article proposes a FD-C-NOMA transmission scheme with a primary user (PU) and secondary user (SU) sensor nodes in the presence of an eavesdropper. The zero-forcing beamforming design problems of FD operation are investigated subject to the practical secrecy rate and the quality of services of PU. To characterize the security reliability trade-off of the FD-C-NOMA scheme, we first derive the closed-form expressions of connection outage probability (COP), the secrecy outage probability (SOP), and effective secrecy throughput (EST) of each SU in the NOMA networks. Then the impacts of the system parameters on the COP, SOP, and EST are investigated to evaluate the security and reliability in the FD-C-NOMA networks. Furthermore, in order to further verify the security and reliability of our considered network, an OMA scheme of FD operation is provided in the simulation for the purpose of comparison. Results demonstrate that the NOMA-based cognitive sensor networks of FD operation outperforms the OMA system in terms of EST. Finally, simulations are performed to validate the accuracy of our analysis results of the proposed scheme.

Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5692
Author(s):  
Van-Duc Phan ◽  
Tan N. Nguyen ◽  
Anh Vu Le ◽  
Miroslav Voznak

In this paper, we study the physical layer security for simultaneous wireless information and power transfer (SWIPT)-based half-duplex (HD) decode-and-forward relaying system. We consider a system model including one transmitter that tries to transmit information to one receiver under the help of multiple relay users and in the presence of one eavesdropper that attempts to overhear the confidential information. More specifically, to investigate the secrecy performance, we derive closed-form expressions of outage probability (OP) and secrecy outage probability for dynamic power splitting-based relaying (DPSBR) and static power splitting-based relaying (SPSBR) schemes. Moreover, the lower bound of secrecy outage probability is obtained when the source’s transmit power goes to infinity. The Monte Carlo simulations are given to corroborate the correctness of our mathematical analysis. It is observed from simulation results that the proposed DPSBR scheme outperforms the SPSBR-based schemes in terms of OP and SOP under the impact of different parameters on system performance.


2020 ◽  
Vol 16 (6) ◽  
pp. 155014772093346
Author(s):  
Xin Fan ◽  
Yan Huo

As Internet of Things (IoT) has boomed in recent years, many security issues have also been exposed. Focusing on physical layer security in wireless Internet of Things network communication, a series of security methods have been widely studied. Nevertheless, cooperative jamming methods in physical layer security to fight against collusive eavesdroppers have not been thoroughly studied yet. In this article, we study a cooperative-jamming-based physical layer secure transmission scheme for Internet of Things wireless networks in the presence of collusive eavesdroppers. We design a cooperative jamming strategy without knowing the channel state information of eavesdroppers. Considering the cooperation of multiple nodes with multiple antennas, this strategy can maximize the signal-to-interference-plus-noise ratio at an actuator (legitimate receiver). Meanwhile, the generated cooperative jamming signals can reduce the signal-to-interference-plus-noise ratio at eavesdroppers. To explore the theoretical security performance of our strategy, we perform a secrecy outage probability analysis and an asymptotic analysis. In the cases of cooperative jamming and without cooperative jamming, the closed-form expressions of the secrecy outage probability are deduced, and the influence of system parameters on the secrecy outage probability becomes more intuitive through a strict mathematical asymptotic behavior analysis. In addition, considering the energy limitation of Internet of Things devices, we propose a power allocation algorithm to minimize the total transmission power given the security requirements. The numerical results show the effectiveness of our schemes and are consistent with the theoretical analysis.


2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Yue Tian ◽  
Xianling Wang ◽  
Zhanwei Wang

The conventional nonorthogonal multiple access (NOMA) strategy has secrecy challenge in coordinated multipoint (CoMP) networks. Under the secrecy considerations, this paper focuses on the security-based NOMA system, which aims to improve the physical layer security issues of conventional NOMA in the coordinated multipoint (NOMA-CoMP) networks. The secrecy performance of S-NOMA in CoMP, that is, the secrecy sum-rate and the secrecy outage probability, is analysed. In contrast to the conventional NOMA (C-NOMA), the results show that the proposed S-NOMA outperforms C-NOMA in terms of the secrecy outage probability and security-based effective sum-rate.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Guilherme Oliveira ◽  
Evelio Fernández ◽  
Samuel Mafra ◽  
Samuel Montejo-Sánchez ◽  
César Azurdia-Meza

The next generations of wireless communications are expected to have great demand for security and spectrum efficiency, and the current secrecy solutions may not be enough. In this paper we propose an optimization framework to address the physical layer security in cognitive radio networks when the secondary users employ improper Gaussian signaling. We resort to genetic algorithms to find optimal values of the secondary transmit power and the degree of impropriety, simultaneously. Then, two different problems regarding the system performance are solved: minimizing the secrecy outage probability and maximizing the secondary achievable rate. In both problems we evaluate, besides the secrecy outage probability, the effective secure throughput and the secure energy efficiency of the system as well. The results show that the secondary network using improper signaling outperforms conventional proper signaling in terms of secrecy outage probability and the effective secure throughput, while in terms of the secure energy efficiency, adopting proper signals attains better performance than improper ones.


Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4327 ◽  
Author(s):  
Muhammad Awan ◽  
Sofia Perez-Simbor ◽  
Concepcion Garcia-Pardo ◽  
Kimmo Kansanen ◽  
Narcis Cardona

With technological advancement, implanted medical devices can treat a wide range of chronic diseases such as cardiac arrhythmia, deafness, diabetes, etc. Cardiac pacemakers are used to maintain normal heart rhythms. The next generation of these pacemakers is expected to be completely wireless, providing new security threats. Thus, it is critical to secure pacemaker transmissions between legitimate nodes from a third party or an eavesdropper. This work estimates the eavesdropping risk and explores the potential of securing transmissions between leadless capsules inside the heart and the subcutaneous implant under the skin against external eavesdroppers by using physical-layer security methods. In this work, we perform phantom experiments to replicate the dielectric properties of the human heart, blood, and fat for channel modeling between in-body-to-in-body devices and from in-body-to-off-body scenario. These scenarios reflect the channel between legitimate nodes and that between a legitimate node and an eavesdropper. In our case, a legitimate node is a leadless cardiac pacemaker implanted in the right ventricle of a human heart transmitting to a legitimate receiver, which is a subcutaneous implant beneath the collar bone under the skin. In addition, a third party outside the body is trying to eavesdrop the communication. The measurements are performed for ultrawide band (UWB) and industrial, scientific, and medical (ISM) frequency bands. By using these channel models, we analyzed the risk of using the concept of outage probability and determine the eavesdropping range in the case of using UWB and ISM frequency bands. Furthermore, the probability of positive secrecy capacity is also determined, along with outage probability of a secrecy rate, which are the fundamental parameters in depicting the physical-layer security methods. Here, we show that path loss follows a log-normal distribution. In addition, for the ISM frequency band, the probability of successful eavesdropping for a data rate of 600 kbps (Electromyogram (EMG)) is about 97.68% at an eavesdropper distance of 1.3 m and approaches 28.13% at an eavesdropper distance of 4.2 m, whereas for UWB frequency band the eavesdropping risk approaches 0.2847% at an eavesdropper distance of 0.22 m. Furthermore, the probability of positive secrecy capacity is about 44.88% at eavesdropper distance of 0.12 m and approaches approximately 97% at an eavesdropper distance of 0.4 m for ISM frequency band, whereas for UWB, the same statistics are 96.84% at 0.12 m and 100% at 0.4 m. Moreover, the outage probability of secrecy capacity is also determined by using a fixed secrecy rate.


Author(s):  
Phu Tran Tin ◽  
Tan N. Nguyen ◽  
Van-Duc Phan ◽  
Minh Tran

In this letter, the system performance of the DF full-duplex (FD) Relaying communication network is investigated with Physical Layer Security (PLS). In this system model, the source (S) and the destination (D) communicate via a helping relay (R) in the presence of the Eavesdropper (E). From the system model, we derive the closed-form expressions for Intercept Probability (IP) and secrecy outage probability (SOP). For verifying the correctness of the analytical analysis, the Monte Carlo simulation is conducted. In addition, the influence of the main system parameter on the system performance is investigated. Finally, the results show that the analytical and the simulation values agree well with each other.


Sign in / Sign up

Export Citation Format

Share Document