scholarly journals Upper and Lower Body Muscle Power Increases After 3-Month Resistance Training in Overweight and Obese Men

2016 ◽  
Vol 11 (6) ◽  
pp. 1728-1738 ◽  
Author(s):  
Erika Zemková ◽  
Oľga Kyselovičová ◽  
Michal Jeleň ◽  
Zuzana Kováčiková ◽  
Gábor Ollé ◽  
...  

This study evaluates the effect of 3 months resistance and aerobic training on muscle strength and power in 17 male overweight and obese men. Subjects underwent either a resistance or aerobic training for a period of 3 months (three sessions per week). Peak isometric force, rate of force development, peak power and height of countermovement and squat jumps, reactive strength index, and mean power in the concentric phase of bench presses were all assessed prior to and after completing the training program. Results identified a significant increase of mean power during both countermovement bench presses at 30 kg (18.6%, p = .021), 40 kg (14.6%, p = .033), and 50 kg (13.1%, p = .042) and concentric-only bench presses at 30 kg (19.6%, p = .017) and 40 kg (13.9%, p = .037) after the resistance training. There was also a significant increase in the height of the jump (12.8%, p = .013), peak power (10.1%, p = .026), and peak velocity (9.7%, p = .037) during the countermovement jump and height of the jump (11.8%, p = .019), peak power (9.6%, p = .032), and peak velocity (9.5%, p = .040) during the squat jump. There were no significant changes in the reactive strength index, peak force, and the rate of force development after the resistance training. The aerobic group failed to show any significant improvements in these parameters. It may be concluded that 3 months of resistance training without caloric restriction enhances upper and lower body muscle power in overweight and obese men.

2011 ◽  
Vol 36 (5) ◽  
pp. 736-747 ◽  
Author(s):  
Anis Chaouachi ◽  
Nick Poulos ◽  
Fathi Abed ◽  
Olfa Turki ◽  
Matt Brughelli ◽  
...  

Whereas muscle potentiation is consistently demonstrated with evoked contractile properties, the potentiation of functional and physiological measures is inconsistent. The objective was to compare a variety of conditioning stimuli volumes and intensities over a 15-min recovery period. Twelve volleyball players were subjected to conditioning stimuli that included 10 repetitions of half squats with 70% of 1-repetition maximum (RM) (10 × 70), 5 × 70, 5 × 85, 3 × 85, 3 × 90, 1 × 90, and control. Jump height, power, velocity, and force were measured at baseline, 1, 3, 5, 10, and 15 min. Data were analysed with a 2-way repeated measure ANOVA and magnitude-based inferences. The ANOVA indicated significant decreases in jump height, power, and velocity during recovery. This should not be interpreted that no potentiation occurred. Each dependent variable reached a peak at a slightly different time: peak jump height (2.8 ± 2.3 min), mean power (3.6 ± 3.01 min), peak power (2.5 ± 1.8 min), and peak velocity (2.5 ± 1.8 min). Magnitude-based inference revealed that both the 5 × 70 and 3 × 85 protocol elicited changes that exceeded 75% likelihood of exceeding the smallest worthwhile change (SWC) for peak power and velocity. The 10 × 70 and the 5 × 70 had a substantial likelihood of potentiating peak velocity and mean power above the SWC, respectively. Magnitude-based inferences revealed that while no protocol had a substantial likelihood of potentiating the peak vertical jump, the 5 × 70 had the most consistent substantial likelihood of increasing the peak of most dependent variables. We were unable to consistently predict if these peaks occurred at 1, 3, or 5 min poststimulation, though declines after 5 min seems probable.


Author(s):  
Carlos Rodriguez-Lopez ◽  
Julian Alcazar ◽  
Jose Losa-Reyna ◽  
JuanManuel Carmona-Torres ◽  
Aurora Maria Cruz-Santaella ◽  
...  

AbstractThis study investigated the acute responses to volume-load-matched heavy-load (80% 1RM) versus light-load (40% 1RM) power-oriented resistance training sessions in well-functioning older adults. Using a randomized cross-over design, 15 volunteers completed each condition on a leg press. Neuromuscular (maximal isometric force and rate of force development) and functional performance (power during sit-to-stand test), lactate, and muscle damage biochemistry (creatine kinase, lactate dehydrogenase and C-reactive protein serum concentration) were assessed pre- and post-exercise. Performance declines were found after heavy-load (Cohen’s d effect size (d); maximal isometric force=0.95 d; rate of force development=1.17 d; sit-to-stand power =0.38 d, all p<0.05) and light-load (maximal isometric force=0.45 d; rate of force development=0.9 d; sit-to-stand power=1.17 d, all p<0.05), while lactate concentration increased only after light-load (1.7 d, p=0.001). However, no differences were found between conditions (all p>0.05). Both conditions increased creatine kinase the day after exercise (marginal effect=0.75 d, p<0.001), but no other blood markers increased (all, p>0.05). Irrespective of the load used, power training induced non-clinically significant decreases in sit-to-stand performance, moderate declines in maximal isometric force, but pronounced decreases in the rate of force development. Furthermore, the metabolic stress and muscle damage were minor; both sessions were generally well tolerated by well-functioning older adults without previous experience in resistance training.


2018 ◽  
Vol 3 (3) ◽  
pp. 43 ◽  
Author(s):  
Angeliki Kavvoura ◽  
Nikolaos Zaras ◽  
Angeliki-Nikoletta Stasinaki ◽  
Giannis Arnaoutis ◽  
Spyridon Methenitis ◽  
...  

The rate of force development (RFD) is vital for power athletes. Lean body mass (LBM) is considered to be an essential contributor to RFD, nevertheless high RFD may be achieved by athletes with either high or low LBM. The aim of the study was to describe the relationship between lower-body LBM and RFD, and to compare RFD in taekwondo athletes and track and field (T&F) throwers, the latter having higher LBM when compared to taekwondo athletes. Nine taekwondo athletes and nine T&F throwers were evaluated for countermovement jumping, isometric leg press and leg extension RFD, vastus lateralis (VL), and medial gastrocnemius muscle architecture and body composition. Lower body LBM was correlated with RFD 0–250 ms (r = 0.81, p = 0.016). Taekwondo athletes had lower LBM and jumping power per LBM. RFD was similar between groups at 30–50 ms, but higher for throwers at 80–250 ms. RFD adjusted for VL thickness was higher in taekwondo athletes at 30 ms, but higher in throwers at 200–250 ms. These results suggest that lower body LBM is correlated with RFD in power trained athletes. RFD adjusted for VL thickness might be more relevant to evaluate in power athletes with low LBM, while late RFD might be more relevant to evaluate in athletes with higher LBM.


Author(s):  
Danny Lum ◽  
Abdul Rashid Aziz

Force–time characteristics obtained during isometric strength tests are significantly correlated to various sporting movements. However, data on the relationship between isometric force–time characteristics and sprint kayaking performance are lacking in the literature. Purpose: The purpose of the study was, therefore, to investigate the relationship between sprint kayaking performance with ergometer performance and measures from 3 isometric strength tests: isometric squat, isometric bench press, and isometric prone bench pull. Methods: A total of 23 sprint kayaking athletes performed all 3 tests, at 90° and 120° knee angles for isometric squat and at elbow angles for isometric bench press and isometric prone bench pull, and a 200-m sprint on-water to attain the fastest time-to-completion (OWTT) possible and on a kayak ergometer to attain the highest mean power (LABTT) possible. Results: There was a significant inverse correlation between OWTT and LABTT (r = −.90, P < .001). The peak forces achieved from all isometric strength tests were significantly correlated with time-to-completion for OWTT and mean power for LABTT (r = −.44 to −.88, P < .05 and .47 to .80, P < .05, respectively). OWTT was significantly correlated with the peak rate of force development during all isometric tests except for the isometric squat at a 120° knee angle (r = −.47 to −.62, P < .05). LABTT was significantly correlated with peak rate of force development from the isometric bench press and isometric prone bench pull (r = .64–.86, P < .01). Conclusion: Based on the observed strong correlations, the mean power attained during LABTT is a good predictor of OWTT time-to-completion. Furthermore, upper- and lower-body maximum strength and peak rate of force development are equally important for on-water and ergometer sprint kayaking performance.


2019 ◽  
Vol 13 (1) ◽  
pp. 155798831982862 ◽  
Author(s):  
Erika Zemková ◽  
Oliver Poór ◽  
Juraj Pecho

This study investigates the relationship between peak force and rate of force development (RFD) obtained from maximal voluntary isometric contraction (MVC) of the back muscles and the power produced during a loaded lifting task. A group of 27 resistance-trained and 41 recreationally physically active men performed a maximal isometric strength test of the back muscles and a deadlift to high pull while lifting progressively increasing weights. Peak RFD correlated significantly with the peak and mean power produced during a deadlift to high pull with lower weights (from 20 to 40 kg), with r values ranging from .941 to .673 and from .922 to .633. The r2 values ranged from .89 to .45 and from .85 to .40, explaining 89%–45% and 85%–40% of total variance. There were also significant relationships between MVC peak force and peak and mean values of power produced during a deadlift to high pull with weights ≥60 kg ( r in range from .764 to .888 and from .735 to .896). Based on r2, a moderate-to-high proportion of variance was explained (58%–79% and 54%–80%). These findings indicate that peak RFD obtained from MVC of the back muscles may be predictive of power performance during a lifting task at light loads. In addition to MVC peak force produced by back muscles, the ability of subjects to develop a high force in a short time should be evaluated in order to gain deeper insight into a loaded lifting performance, namely, in those prone to low back pain.


2016 ◽  
Vol 30 (10) ◽  
pp. 2749-2760 ◽  
Author(s):  
Henrik Kirk ◽  
Svend S. Geertsen ◽  
Jakob Lorentzen ◽  
Kasper B. Krarup ◽  
Thomas Bandholm ◽  
...  

Author(s):  
Dana M. Lis ◽  
Matthew Jordan ◽  
Timothy Lipuma ◽  
Tayler Smith ◽  
Karine Schaal ◽  
...  

Background: Exercise and vitamin C-enriched collagen supplementation increase collagen synthesis, potentially increasing matrix density, stiffness, and force transfer. Purpose: To determine whether vitamin C-enriched collagen (hydrolyzed collagen [HC] + C) supplementation improves rate of force development (RFD) alongside a strength training program. Methods: Using a double-blinded parallel design, over 3 weeks, healthy male athletes (n = 50, 18–25 years) were randomly assigned to the intervention (HC + C; 20 g HC + 50 mg vitamin C) or placebo (20 g maltodextrin). Supplements were ingested daily 60 min prior to training. Athletes completed the same targeted maximal muscle power training program. Maximal isometric squats, countermovement jumps, and squat jumps were performed on a force plate at the same time each testing day (baseline, Tests 1, 2, and 3) to measure RFD and maximal force development. Mixed-model analysis of variance compared performance variables across the study timeline, whereas t tests were used to compare the change between baseline and Test 3. Results: Over 3 weeks, maximal RFD in the HC + C group returned to baseline, whereas the placebo group remained depressed (p = .18). While both groups showed a decrease in RFD through Test 2, only the treatment group recovered RFD to baseline by Test 3 (p = .036). In the HC + C group, change in countermovement jumps eccentric deceleration impulse (p = .008) and eccentric deceleration RFD (p = .04) was improved. A strong trend was observed for lower limb stiffness assessed in the countermovement jumps (p = .08). No difference was observed in maximal force or squat jump parameters. Conclusion: The HC + C supplementation improved RFD in the squat and countermovement jump alongside training.


Sign in / Sign up

Export Citation Format

Share Document