scholarly journals Optimization of Digital Transfer Textile Printing Process using Multi-Objective Function Analysis

2017 ◽  
Vol 12 (1) ◽  
pp. 155892501701200
Author(s):  
Dong Won Jeon ◽  
Sungmin Kim ◽  
In Hwan Sul ◽  
Chang Kyu Park

Digital textile printing (DTP) is widely used because it is more efficient and simpler than conventional textile printing methods. Digital transfer textile printing (DTTP) is one of the most efficient and simplest DTP methods. In this study, the optimum process conditions for DTTP have been investigated, to minimize the distortion of printed images and maximize the color reproducibility. First, a novel measurement method for fabric shrinkage and image distortion was developed. Then 9 characteristic values were defined and a series of experiments were designed and performed using the Taguchi method. Finally, two different multiple-characteristic value analyses were performed on the results. In one method, 9 characteristic values were converted into a single value. In the other method, the characteristic values were divided into 3 groups for analysis. Finally, results from the two methods were compared to determine which method was more suitable.

2016 ◽  
Vol 11 (2) ◽  
pp. 155892501601100
Author(s):  
Jin Joo Jung ◽  
Sungmin Kim ◽  
Chang Kyu Park

Digital textile printing has become one of the most important manufacturing processes for mass customization of clothing goods, especially for short-run prints. In this method, high color strength and fastness are very important. In this study, the optimization of the printing process was investigated using the Taguchi method. To determine the optimum conditions for color strength and fastness, two types of multiple characteristic parameter design methods were used, including the single characteristic value conversion method and the minimum-maximum selection method. Both methods suggested better conditions than currently used methods.


2013 ◽  
Vol 8 (3) ◽  
pp. 155892501300800 ◽  
Author(s):  
Mitra Karimian ◽  
Hossein Hasani ◽  
Saeed Ajeli

This research investigates the effect of fiber, yarn and fabric variables on the bagging behavior of single jersey weft knitted fabrics interpreted in terms of bagging fatigue percentage. In order to estimate the optimum process conditions and to examine the individual effects of each controllable factor on a particular response, Taguchi's experimental design was used. The controllable factors considered in this research are blending ratio, yarn twist and count, fabric structure and fabric density. The findings show that fabric structure has the largest effect on the fabric bagging. Factor yarn twist is second and is followed by fabric density, blend ratio and yarn count. The optimum conditions to achieve the least bagging fatigue ratio were determined.


2011 ◽  
Vol 331 ◽  
pp. 261-264 ◽  
Author(s):  
Qi Ming Zhao ◽  
Shan Yan Zhang

The auxiliary devices of ultrasonic treatment was designed and manufactured. The cotton fabric was desized using 2000L desizing enzyme with the conventional enzyme desizing process and ultrasonic enzyme desizing process respectively. Through the orthogonal experiment, the optimum process conditions of conventional enzyme desizing process and ultrasonic enzyme desizing process were determined. For the conventional enzyme desizing process, the optimized desizing conditions of cotton fabrics were: desizing enzyme dosage was 1.5g/l, temperature was 80°C, PH value was 6, and time was 60mins. The optimum process conditions of ultrasonic enzyme desizing process were: desizing enzyme dosage was 1.5g/l, temperature was 50°C, PH value was 6 and time was 45minutes. The research result indicates that, under the same desizing condition, ultrasonication can improve the desizing percentage and whiteness of cotton fabric, but the fabric strength loss increases slightly. And for the same required desizing percentage, the ultrasonic enzyme desizing process saved time and reduced the temperature of experiments compared with traditional enzyme desizing process


2013 ◽  
Vol 726-731 ◽  
pp. 2829-2832
Author(s):  
Yong Shu Tian ◽  
Run Xin Hou

Photocatalyst of Fe-Sm-Yb modified TiO2 loaded on clay brick was prepared for degradation of NH3-N in coking water. The influence factors of NH3-N degradation rates were discussed by single factor experiment and orthogonal experiment. The optimum process conditions of photocatalytic degradation NH3-N in coking water were confirmed. The results show that NH3-N degradation rates 82.23% were highest in the conditions of pH 6.5, photocatalyst charge of 1.4 g, illumination for 6h, reaction at 55°C, calcination at 500°C.


2016 ◽  
Vol 2016 (DPC) ◽  
pp. 002018-002053
Author(s):  
Swapan Bhattacharya ◽  
Fei Xie ◽  
Daniel F. Baldwin ◽  
Han Wu ◽  
Kelley Hodge ◽  
...  

Reworkable underfills and edge bond adhesives are finding increasing utility in high reliability and harsh environment applications. The ASICs and FPGAs often used in these systems typically require designs incorporating large BGAs and ceramic BGAs. For these high reliability and harsh environment applications, these packages typically require underfill or edge bond materials to achieve the needed thermal cycle, mechanical shock and vibration reliability. Moreover, these applications often incorporate high dollar value printed circuit boards (on the order of thousands or tens of thousands of dollars per PCB) hence the need to rework these assemblies and maintain the integrity of the PCB and high dollar value BGAs. This further complicates the underfill requirements with a reworkability component. Reworkable underfills introduce a number of process issues that can result in significant variability in reliability performance. In contrast, edge bond adhesives provide a high reliability solution with substantial benefits over underfills. One interesting question for the large area BGA applications of reworkable underfills and edge bond materials is the comparison of their reliability performance. This paper presents a study of reliability comparison between two robust selected reworkable underfill and edge bond adhesive in a test vehicle including 11mm, 13mm, and 27mm large area BGAs. Process development for those large area BGA applications was also conducted on the underfill process and edge bond process to determine optimum process conditions. For underfill processing, establishing an underfill process that minimizing/eliminates underfill voids is critical. For edge bond processing, establishing an edge bond that maximizes bond area without encapsulating the solder balls is key to achieving high reliability. In addition, this paper also presents a study of new high performance reworkable edge bond materials designed to improve the reliability of large area BGAs and ceramic BGAs assemblies while maintaining good reworkablity. Four edge bond materials (commercially available) were studied and compared for a test vehicles with 12mm BGAs. The reliability testing protocol included board level thermal cycling (−40 to 125°C), mechanical drop testing (2900 G), and random vibration testing (3 G, 10 – 1000 Hz).


Sign in / Sign up

Export Citation Format

Share Document