scholarly journals Discovery of a Selective 6-Hydroxy-1, 4-Diazepan-2-one Containing Butyrylcholinesterase Inhibitor by Virtual Screening and MM-GBSA Rescoring

Dose-Response ◽  
2020 ◽  
Vol 18 (2) ◽  
pp. 155932582093852
Author(s):  
You Zhou ◽  
Yanyu Hu ◽  
Xin Lu ◽  
Hongyu Yang ◽  
Qihang Li ◽  
...  

Alzheimer disease (AD) is the most common form of dementia characterized by the loss of cognitive abilities through the death of central neuronal cells. In this study, structure-based virtual screens of 2 central nervous system-targeted libraries followed by molecular mechanics/generalized born surface area rescoring were performed to discover novel, selective butyrylcholinesterase (BChE) inhibitors, which are one of the most effective therapeutic strategies for the treatments in late-stage AD. Satisfyingly, compound 5 was identified as a highly selective low micromolar inhibitor of BChE (BChE IC50 = 1.4 μM). The binding mode prediction and kinetic analysis were performed to obtain detailed information about compound 5. Besides, a preliminary structure–activity relationship investigation of compound 5 was carried out for further development of the series. The present results provided a valuable chemical template with a novel scaffold for the development of selective BChE inhibitors.

Author(s):  
Jan Aaseth ◽  
Aleksandra Buha ◽  
David R. Wallace ◽  
Geir Bjørklund

Tauopathies are a disease group characterized by either pathological accumulation or release of fragments of hyperphosphorylated tau proteins originating from the central nervous system. The tau hypotheses of Parkinson’s and Alzheimer’s diseases contain a clinically diverse spectrum of tauopathies. Studies of case records of various tauopathies may reveal clinical phenotype characteristics of the disease. In addition, improved understanding of different tauopathies would disclose environmental factors, such as xenobiotics and trace metals, that can precipitate or modify the progression of the disorder. Important for diagnostics and monitoring of these disorders is a further development of adequate biomarkers, including refined neuroimaging, or proteomics. Our goal is to provide an in-depth review of the current literature regarding the pathophysiological roles of tau proteins and the pathogenic factors leading to various tauopathies, with the perspective of future advances in potential therapeutic strategies.


2021 ◽  
pp. 174751982199343
Author(s):  
Long Tang ◽  
Jianchun Jiang ◽  
Guoqiang Song ◽  
Yajing Wang ◽  
Min Wei ◽  
...  

Phosphodiesterase II (PDE2) is mainly distributed in brain and heart cells, and it is a potential therapeutic target for the treatment of central nervous system (CNS) diseases such as Alzheimer’s disease. Based on the structure of the existing PDE2 inhibitor BAY60-7550, a series of novel phthalimides and phenylpyrazolo[1,5- a]pyrimidines have been designed and prepared. Furthermore, after evaluating their inhibitory activity toward PDE2, compound 7-oxo- N-phenethyl-5-phenyl-4,7-dihydropyrazolo[1,5- a]pyrimidine-3-carboxamide is found to have the optimum inhibitory potential (IC50: 1.82 ± 0.29 μM). Discovery Studio software used to simulate the structure–activity relationship between this compound and the PDE2 protein crystal 4HTX to illustrate the binding modes, which provides favorable guidance for the further development of effective PDE2 inhibitors.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jerónimo Laiolo ◽  
Priscila Ailin Lanza ◽  
Oscar Parravicini ◽  
Cecilia Barbieri ◽  
Daniel Insuasty ◽  
...  

AbstractP-gp-associated multidrug resistance is a major impediment to the success of chemotherapy. With the aim of finding non-toxic and effective P-gp inhibitors, we investigated a panel of quinolin-2-one-pyrimidine hybrids. Among the active compounds, two of them significantly increased intracellular doxorubicin and rhodamine 123 accumulation by inhibiting the efflux mediated by P-gp and restored doxorubicin toxicity at nanomolar range. Structure–activity relationships showed that the number of methoxy groups, an optimal length of the molecule in its extended conformation, and at least one flexible methylene group bridging the quinolinone to the moiety bearing the pyrimidine favored the inhibitory potency of P-gp. The best compounds showed a similar binding pattern and interactions to those of doxorubicin and tariquidar, as revealed by MD and hybrid QM/MM simulations performed with the recent experimental structure of P-gp co-crystallized with paclitaxel. Analysis of the molecular interactions stabilizing the different molecular complexes determined by MD and QTAIM showed that binding to key residues from TMH 4–7 and 12 is required for inhibition.


2021 ◽  
Vol 14 (3) ◽  
pp. 265
Author(s):  
Ana Dolšak ◽  
Tomaž Bratkovič ◽  
Larisa Mlinarič ◽  
Eva Ogorevc ◽  
Urban Švajger ◽  
...  

Indoleamine 2,3-dioxygenase 1 (IDO1) is a promising target in immunomodulation of several pathological conditions, especially cancers. Here we present the synthesis of a series of IDO1 inhibitors with the novel isoxazolo[5,4-d]pyrimidin-4(5H)-one scaffold. A focused library was prepared using a 6- or 7-step synthetic procedure to allow a systematic investigation of the structure-activity relationships of the described scaffold. Chemistry-driven modifications lead us to the discovery of our best-in-class inhibitors possessing p-trifluoromethyl (23), p-cyclohexyl (32), or p-methoxycarbonyl (20, 39) substituted aniline moieties with IC50 values in the low micromolar range. In addition to hIDO1, compounds were tested for their inhibition of indoleamine 2,3-dioxygenase 2 and tryptophan dioxygenase, and found to be selective for hIDO1. Our results thus demonstrate a successful study on IDO1-selective isoxazolo[5,4-d]pyrimidin-4(5H)-one inhibitors, defining promising chemical probes with a novel scaffold for further development of potent small-molecule immunomodulators.


Author(s):  
Chiara Luise ◽  
Dina Robaa ◽  
Wolfgang Sippl

AbstractSome of the main challenges faced in drug discovery are pocket flexibility and binding mode prediction. In this work, we explored the aromatic cage flexibility of the histone methyllysine reader protein Spindlin1 and its impact on binding mode prediction by means of in silico approaches. We first investigated the Spindlin1 aromatic cage plasticity by analyzing the available crystal structures and through molecular dynamic simulations. Then we assessed the ability of rigid docking and flexible docking to rightly reproduce the binding mode of a known ligand into Spindlin1, as an example of a reader protein displaying flexibility in the binding pocket. The ability of induced fit docking was further probed to test if the right ligand binding mode could be obtained through flexible docking regardless of the initial protein conformation. Finally, the stability of generated docking poses was verified by molecular dynamic simulations. Accurate binding mode prediction was obtained showing that the herein reported approach is a highly promising combination of in silico methods able to rightly predict the binding mode of small molecule ligands in flexible binding pockets, such as those observed in some reader proteins.


2021 ◽  
Author(s):  
Jerónimo Laiolo ◽  
Priscila Ailin Lanza ◽  
Oscar Parravicini ◽  
Cecilia Barbieri ◽  
Daniel Insuasty ◽  
...  

Abstract P-gp-associated multidrug resistance (MDR) is a major impediment to the success of chemotherapy. With the aim of finding non-toxic and effective P-gp inhibitors, we investigated a panel of quinolin-2-one-pyrimidine hybrids. Among the active compounds, two of them significantly increased intracellular doxorubicin and rhodamine 123 accumulation by inhibiting the efflux mediated by P-gp and restored doxorubicin toxicity at nanomolar range. Structure-activity relationships showed that the number of methoxy groups, an optimal length of the molecule in its extended conformation, and at least one flexible methylene group bridging the quinolinone moiety favored the inhibitory potency of P-gp. The best compounds showed a similar binding pattern and interactions to those of doxorubicin and tariquidar, as revealed by MD and hybrid QM/MM simulations performed with the recent experimental structure of P-gp co-crystallized with paclitaxel. Analysis of the molecular interactions stabilizing the different molecular complexes determined by MD and QTAIM showed that binding to key residues from TMH 4–7 and 12 is required for inhibition.


Sign in / Sign up

Export Citation Format

Share Document