scholarly journals Open-loop position control of a polymer cable–driven parallel robot via a viscoelastic cable model for high payload workspaces

2017 ◽  
Vol 9 (12) ◽  
pp. 168781401773719 ◽  
Author(s):  
Jinlong Piao ◽  
XueJun Jin ◽  
Jinwoo Jung ◽  
Eunpyo Choi ◽  
Jong-Oh Park ◽  
...  
Electronics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 745
Author(s):  
Marco Carpio ◽  
Roque Saltaren ◽  
Julio Viola ◽  
Cristian Calderon ◽  
Juan Guerra

The design of robot systems controlled by cables can be relatively difficult when it is approached from the mathematical model of the mechanism, considering that its approach involves non-linearities associated with different components, such as cables and pulleys. In this work, a simple and practical decoupled control structure proposal that requires practically no mathematical analysis was developed for the position control of a planar cable-driven parallel robot (CDPR). This structure was implemented using non-linear fuzzy PID and classic PID controllers, allowing performance comparisons to be established. For the development of this research, first the structure of the control system was proposed, based on an analysis of the cables involved in the movement of the end-effector (EE) of the robot when they act independently for each axis. Then a tuning of rules was carried out for fuzzy PID controllers, and Ziegler–Nichols tuning was applied to classic PID controllers. Finally, simulations were performed in MATLAB with the Simulink and Simscape tools. The results obtained allowed us to observe the effectiveness of the proposed structure, with noticeably better performance obtained from the fuzzy PID controllers.


Author(s):  
Yogesh V. Hote ◽  
A. N. Jha ◽  
J. R. P. Gupta

In this paper, simple approach is proposed to determine reduced order model of a unstable open-loop position control system. This approach is based on Krishnamurthy’s approach on Routh criterion on reduced order modelling. The results are simulated in Matlab environment.


2020 ◽  
Vol 17 (6) ◽  
pp. 822-836
Author(s):  
Auday Al-Mayyahi ◽  
Ammar A. Aldair ◽  
Chris Chatwin

Abstract3-RRR planar parallel robots are utilized for solving precise material-handling problems in industrial automation applications. Thus, robust and stable control is required to deliver high accuracy in comparison to the state of the art. The operation of the mechanism is achieved based on three revolute (3-RRR) joints which are geometrically designed using an open-loop spatial robotic platform. The inverse kinematic model of the system is derived and analyzed by using the geometric structure with three revolute joints. The main variables in our design are the platform base positions, the geometry of the joint angles, and links of the 3-RRR planar parallel robot. These variables are calculated based on Cayley-Menger determinants and bilateration to determine the final position of the platform when moving and placing objects. Additionally, a proposed fractional order proportional integral derivative (FOPID) is optimized using the bat optimization algorithm to control the path tracking of the center of the 3-RRR planar parallel robot. The design is compared with the state of the art and simulated using the Matlab environment to validate the effectiveness of the proposed controller. Furthermore, real-time implementation has been tested to prove that the design performance is practical.


2019 ◽  
Vol 50 (12) ◽  
pp. 2261-2279 ◽  
Author(s):  
Shuhuan Wen ◽  
Di Zhang ◽  
Baowei Zhang ◽  
Hak Keung Lam ◽  
Hongbin Wang ◽  
...  

1981 ◽  
Vol 25 (1) ◽  
pp. 571-575
Author(s):  
R. A. Miller ◽  
R. J. Jagacinski ◽  
R. B. Nalavade ◽  
W. W. Johnson

Subjects manipulated a position control stick with one hand and a velocity control stick with the other hand in order to capture a moving target displayed on an oscilloscope screen. The two control sticks were additively coupled. In order to understand the coordination of the two control sticks, event-based first-order markov “activity sequence generators” were constructed for individual subjects. These discrete probabilistic structures are closely related to each subject's overall plan or general strategy for the capture task. Striking individual differences and strategic errors in performance were revealed. When combined with additional time-conditioned (open-loop) and error-conditioned (closed-loop) details, the activity sequence generators provide a basis for a hierarchic description of this perceptual-motor skill.


Author(s):  
J. M. Pottinger ◽  
N. D. Ring

The application of position control to externally powered prosthetic arms leads to increased function and versatility when compared to a prosthetic system with open-loop control. However, various compromises are necessary owing to the limited number of available control sites. An investigation is being conducted into the possibility of combining the advantages of position control during the dynamic phase of movement with the locking facility of velocity–time control during the static phase, which leads to a larger number of available control sites and thus a greater number of degrees of freedom.


2014 ◽  
Vol 602-605 ◽  
pp. 1157-1160
Author(s):  
Mei Yu ◽  
Guo Wei Liu ◽  
Bing Kong

In view of the present mining spraying manipulator operation is not flexible ,spraying effect is poor, susceptible to interference and other issues, this paper studies and realizes a kind of low cost, strong practicability of spraying manipulator control system. Using S7-200PLC and 2MA860H drive to control the 86BYG250A stepper motor open-loop control system, and the precise position control is realized. By controlling of the x-y axis mine spraying manipulator. Validate the system operation is simple, highly efficient and stable, energy conservation and environmental protection, strong anti-jamming capability, it can be widely used in all kinds of mining equipment.


Sign in / Sign up

Export Citation Format

Share Document