scholarly journals Computational consistency of the material models and boundary conditions for finite element analyses on cantilever beams

2018 ◽  
Vol 10 (6) ◽  
pp. 168781401878002 ◽  
Author(s):  
Wei-chen Lee ◽  
Chen-hao Zhang

The objective of this research was to investigate the effects of material models, element types, and boundary conditions on the consistency of finite element analysis. Two cantilever beams were used; one made of stainless steel SUS301 3/4H and the other made of polymer polyoxymethylene. The load–deflection curves of the two cantilever beams obtained by experiments were compared to those obtained by finite element analysis, where the material models—including bilinear, trilinear, and multi-linear—were used. Four element types—beam, plane stress, shell, and solid—were also employed with the material models to obtain the simulated load–deflection curves of the cantilever beams. It was found that bilinear material models had the stiffest behavior due to their overestimated yield strength. In addition, by applying a finite displacement to simulate the grip of the cantilever beams, the discrepancy between the simulated permanent set and the experimental set could be reduced from 80% to 5%. To sum up, both the selection of the material model and the setup of the boundary conditions are critical for obtaining good agreement between the finite element analysis results and the experimental data.

2010 ◽  
Vol 450 ◽  
pp. 119-123 ◽  
Author(s):  
Kemal Çalışkan ◽  
Erhan Ilhan Konukseven (1) ◽  
Y. Samim Ünlüsoy

The basic problem in the finite element analysis of parts made of hyperelastic materials is the identification of mathematical material model coefficients. Furthermore, selection of a suitable mathematical hyperelastic material model may not be straightforward. In this study, a systematic design methodology is presented for hyperelastic suspension jounce bumpers. The presented methodology involves a critical examination of material testing procedures, material model selection, and coefficient identification. The identified material model coefficients are verified through comparison of the finite element analysis results with actual tests.


Author(s):  
Y B Park ◽  
D Y Yang

In metal forming, there are problems with recurrent geometric characteristics without explicitly prescribed boundary conditions. In such problems, so-called recurrent boundary conditions must be introduced. In this paper, as a practical application of the proposed method, the precision cold forging of a helical gear (which is industrially useful and geometrically complicated) has been simulated by a three-dimensional rigid-plastic finite element method and compared with the experiment. The application of recurrent boundary conditions to helical gear forging analysis is proved to be effective and valid. The three-dimensional deformed pattern by the finite element analysis is shown, and the forging load is compared with the experimental load. The profiles of the free surface of the workpiece show good agreement between the computation and the experiment.


2013 ◽  
Vol 135 (2) ◽  
Author(s):  
Dianyin Hu ◽  
Rongqiao Wang ◽  
Guicang Hou

A new lifetime criterion for withdrawal of turbine components from service is developed in this paper based on finite element (FE) analysis and experimental results. Finite element analysis is used to determine stresses in the turbine component during the imposed cyclic loads and analytically predict a fatigue life. Based on the finite element analysis, the critical section is then subjected to a creep-fatigue test, using three groups of full scale turbine components, attached to an actual turbine disc conducted at 750 °C. The experimental data and life prediction results were in good agreement. The creep-fatigue life of this type of turbine component at a 99.87% survival rate is 30 h.


1981 ◽  
Vol 103 (4) ◽  
pp. 385-391 ◽  
Author(s):  
B. S. Thompson

Variational theorems are presented for analyzing the vibrational response of flexible linkage mechanisms and the surrounding acoustic medium in which they are immersed. These theorems are established by generalizing Hamilton’s principle through using Lagrange multipliers to incorporate field equations and boundary conditions within the functional. The same philosophy is adopted to handle the conditions at the fluid-structural interface. When independent arbitrary variations of the system parameters are permitted, these acousto-elastodynamic theorems yield as characteristic equations the equation of motion for each member of the linkage, the acoustical wave equation, the compatibility conditions at the interface between the fluid and solid continua, and also the boundary conditions. These variational statements provide the foundations for several different classes of finite element analysis.


2014 ◽  
Vol 893 ◽  
pp. 314-319
Author(s):  
P. Gurusamy ◽  
S. Balasivanandha Prabu ◽  
R. Paskaramoorthy

This paper discusses the influence of die temperature on the solidification behaviour of A356/SiCp composites fabricated by squeeze casting method. Information on the solidification studies of squeeze cast composites is somewhat scarce. Experiments were carried out by varying the die temperatures for cylindrical shaped composite castings K-type thermocouples were interfaced to the die and the temperature-time history was recorded to construct the cooling curves. The cooling curves are also predicted from the finite element analysis (FEA) software ANSYS 13. The experimental and predicted cooling curves are not in good agreement. In addition to, the experimental and theoretical solidification times are studied. It was understood that the increase in the die temperature decreases the cooling rate.


1993 ◽  
Vol 115 (1) ◽  
pp. 102-109 ◽  
Author(s):  
S. A. Majlessi ◽  
D. Lee

The process of square-cup drawing is modeled employing a simplified finite element analysis technique. In order to make the algorithm computationally efficient, the deformation (total strain) theory of plasticity is adopted. The solution scheme is comprised of specifying a mesh of two-dimensional finite elements with membrane properties over the deformed configuration of the final part geometry. The initial positions of these elements are then computed by minimization of the potential energy, and therefore the strain distributions are determined. In order to verify predictions made by the finite element analysis method, a drawing apparatus is built and various drawing experiments are carried out. A number of circular and square cups are drawn and strain distributions measured. It is observed that there is generally a good agreement between computed and measured results for both axisymmetric and nonaxisymmetric cases.


2014 ◽  
Vol 919-921 ◽  
pp. 1016-1019 ◽  
Author(s):  
Xue Yu Xiong ◽  
Rong Jun Xue ◽  
Sen Zhang ◽  
Li Jun Wang

The masonry building takes a majority of town housings in these areas. Unlike the experimental study, the Finite Element Analysis is an important part for better comprehension of the finite element method and can reduce the investment and manpower. The aim of this paper is to simulate the structural response from the variety of masonry buildings under earthquake excitations by using finite element software called ABAQUS. There are four models of the masonry building with different storey, which include the one without constructional column and ring beam, with constructional column only, with ring beam only and with constructional column and ring beam simultaneously. In the process of modeling, we adopt the integrated model and regard walls, constructional columns, slabs and steels as homogenous continuums. Furthermore, we adopt concrete damaged plasticity material model to simulate the material of building and input El Centro earthquake wave N-S component. The result of analysis shows that setting ring beams or constructional columns can significantly improve the integrity of the building and reduce the mises stress on foundation. The result of analysis has a significant guidance on masonry building construction in seismic region.


2011 ◽  
Vol 311-313 ◽  
pp. 2315-2321
Author(s):  
Sebin Jose ◽  
Sunil Bhat

Solution of two-dimensional stress problem is reduced to integration of bi-harmonic equation[1].A polynomial is chosen as Airy’s stress function.Constants of the polynomial[2] are found by fulfilling the boundary conditions. Stress solutions are obtained from.The paper presents polynomial based stress solutions of beams for complex cases involving offset loads and other combinations with offset loads.The results are compared with those obtained from finite element analysis[3] and conventional methods.The results are in good agreement with each other.


2018 ◽  
Vol 775 ◽  
pp. 554-559 ◽  
Author(s):  
Ravivat Rugsaj ◽  
Chakrit Suvanjumrat

This research aimed to find an appropriated hyperelastic material model for the finite element analysis (FEA) of a non-pneumatic tire (NPT). The innovative method involving water jet cutting technique was performed to prepare the tensile and compressive test specimens from the non-pneumatic tire, TWEEL, which was developed by Michelin. The stress-strain relationship of material testing results was fitted to select the suitable constitutive model. The FEA was performed and compared to the physical experiment to validate the hyperelastic material model. The suitable hyperelastic material model can be used in the development of NPT for the further work.


Sign in / Sign up

Export Citation Format

Share Document