scholarly journals Estimation formula for residual stress from the blind-hole drilling method

2018 ◽  
Vol 10 (8) ◽  
pp. 168781401878740 ◽  
Author(s):  
Chi-Liang Kung ◽  
Ah-Der Lin ◽  
Po-Wei Huang ◽  
Chao-Ming Hsu

In this study, the accuracy of blind-hole method on weld residual stress estimation is investigated. A modified parameter group has also proposed to improve the accuracy. The thermal-elastic-plastic finite element model is employed to build up the residual stress distribution and the blind-hole process. The MSC Marc finite element software package is used to simulate the welding process and the welding residual stress and strain distributions around the weld of two inconel 690 alloy plates filled with I-52 GTAW filler. Then the process of the traditional blind hole is simulated by employing the inactive elements. The data of the residual strain variations of strain gages located around the blind hole is introduced into the blind-hole method to estimate the original residual stress components at the hole center. The effects of drilling depth, drilling size, gage radius, gage position, and the distance on the accuracy of estimated residual stress have also been studied and discussed. Based on the residual stress components simulated from the welding process, a modified stress parameter group has also been proposed to improve the accuracy of blind-hole method. Numerical results indicate that the accuracy of estimated residual stress can be improved significantly by employing the proposed blind-hole parameters.

2013 ◽  
Vol 328 ◽  
pp. 990-994
Author(s):  
Chun Ho Yin ◽  
Chao Ming Hsu ◽  
Ping Shen Su ◽  
Jao Hwa Kuang

This study investigates the effectiveness of the hole-drilling strain gage method on residual stress estimation. The thermal elastic-plastic model of the commercial Marc finite element method package is used to simulate and build up the hole-drilling process and residual stress distribution. Two Inconel 690 alloy plate welded with GTAW filler I-52 solder are first simulated using the Marc software. The traditional hole-drilling process is then simulated. The simulated residual strain variation data is incorporated into the hole-drilling strain-gage method to derive the possible residual stress components. The effects of drilling depth and drill size on the accuracy of residual stress estimates are also discussed. A comparison of stress components estimated from the traditional hole-drilling strain gage method and simulated from the Marc software is presented. The modified dimensionless parameters are provided by applying the optimum technique. The numerical results indicate that the proposed dimensionless parameters can significantly improve the accuracy of estimated residual stress components.


Author(s):  
Dongil Kwon ◽  
Jung-Suk Lee ◽  
Kwang-Ho Kim ◽  
Afshin Motarjemi ◽  
Julian Speck

The weld joints in structural components have long been considered important sites for safety and reliability assessment. In particular, the residual stress in piping weldments induced by the welding process must be evaluated accurately before and during service. This study reports an indentation technique for evaluating welding residual stress nondestructively. Indentation load-depth curves were found to shift with the magnitude and direction of the residual stress. Nevertheless, contact depths in the stress-free and stressed states were constant at a specific indentation load. This means that residual stress induces additional load to keep contact depth constant at the same load. By taking these phenomena into account, welding residual stress was obtained directly from the indentation load-depth curve. In addition, the results were compared with values from the conventional hole-drilling and saw-cutting method.


2005 ◽  
Vol 297-300 ◽  
pp. 2122-2127 ◽  
Author(s):  
Yeol Choi ◽  
Yun Hee Lee ◽  
Jae Il Jang ◽  
Sang Ki Park ◽  
Kwang Ho Kim ◽  
...  

The weld joints in power-plant pipelines have long been considered important sites for safety and reliability assessment. In particular, the residual stress in pipeline weldments induced by the welding process must be evaluated accurately before and during service. This study reports an indentation technique for evaluating welding residual stress nondestructively. Indentation load-depth curves were found to shift with the magnitude and direction of the residual stress. Nevertheless, contact depths in the stress-free and stressed states were constant at a specific indentation load. This means that residual stress induces additional load to keep contact depth constant at the same load. By taking these phenomena into account, welding residual stress was obtained directly from the indentation load-depth curve. In addition, the results were compared with values from the conventional hole-drilling and saw-cutting methods.


2012 ◽  
Vol 184-185 ◽  
pp. 649-652
Author(s):  
Gui Fang Guo ◽  
Shi Qiong Zhou ◽  
Liang Wang ◽  
Li Hao ◽  
Ze Guo Liu

The effects of electron beam welding on the residual stresses of welded joints of pure aluminum plate 99.60 are studied by through-hole-drilling and blind-hole-drilling method. Meanwhile, based on the thermal elastic-plastic theory, and making use of ANSYS finite element procedure, a three - dimensional finite element model using mobile heat source of temperature and stresses field of electron beam welding in pure aluminum is established. The welding process is simulated by means of the ANSYS software. The results show that the main residual stress is the longitudinal residual stress, the value of the longitudinal residual stress is much larger than the transverse residual stress. But the residual stress in the thickness is rather small. And in the weld center, the maximum value of residual stresses is lower than its yield strength. The simulation results about the welded residual stresses are almost identical with the experimental results by measuring. So the research result is important to science research and engineering application.


2015 ◽  
Vol 1095 ◽  
pp. 693-697
Author(s):  
Jiu Hong Jiang ◽  
Qiang Wang ◽  
Wen Lv

A 60mm Q345 rigid thick plate with V groove welding connection was modeled in order to simulate the welding residual stress by finite element method. Both element birth and death technique and double ellipse heat source model were introduced to simulate the welding process. The welding thermal field and residual stress of thick steel plate were analyzed by finite element simulation software ANSYS.Then the thermal field and residual stress distribution were visually demonstrated. The result shows that the thermal field shaped like a spindle during welding period and the residual stress at the mid-section in lateral, longitudinal and thickness direction of the welding joint is lower than the stress at the surface of the welding connection.


Author(s):  
Wei Jiang ◽  
Kadda Yahiaoui

Piping branch junctions and nozzle attachments to main pressure vessels are common engineering components used in the power, oil and gas, and shipbuilding industries amongst others. These components are usually fabricated by multipass welding. The latter process is known to induce residual stresses at the fabrication stage which can have severe adverse effects on the in-service behavior of such critical components. It is thus desirable if the distributions of residual stresses can be predicted well in advance of welding execution. This paper presents a comprehensive study of three dimensional residual stress distributions in a stainless steel tee branch junction during a multipass welding process. A full 3D thermo-mechanical finite element model has been developed for this purpose. A newly developed meshing technique has been used to model the complex intersection areas of the welded junction with all hexahedral elements. Element removal/reactivate technique has been employed to simulate the deposition of filler material. Material, geometry and boundary nonlinearities associated with welding were all taken into account. The analysis results are presented in the form of stress distributions circumferentially along the weldline on both run and branch pipes as well as at the run and branch cross sections. In general, this computational model is capable of predicting 3D through thickness welding residual stress, which can be valuable for structural integrity assessments of complex welded geometries.


2012 ◽  
Vol 622-623 ◽  
pp. 309-314 ◽  
Author(s):  
Xiu Li Shen ◽  
Shao Jing Dong

This paper has proposed a new shape of the twin-web turbine disc. Based on a design optimization of the shape of the twin-web turbine disc by finite element numerical calculation, we analyzed welding types and carried out the simulation of the welding process and obtained the residual stress. Finally we got a 5.8% weight loss and summarized residual stress of the welding and proved the feasibility of the new shape.


2012 ◽  
Vol 256-259 ◽  
pp. 2074-2078
Author(s):  
Yun Liu ◽  
Cheng Chao Mao ◽  
Yong Jie Song ◽  
Xue Jing Song

Taking side-plate reinforced section as research objects, this paper establishes the models by Ansys non-linear finite element method and simulates welding process of with birth-death element method. Comparing the different seismic index among test specimen and finite element models that based on whether or not considering welding residual stress, based on which, this research draws a conclusion that the influence of welding residual stress for seismic behavior to side-plate reinforced section is not obvious.


2018 ◽  
Vol 16 ◽  
pp. 03002
Author(s):  
Delia Garleanu ◽  
Claudia Borda ◽  
Gabriel Garleanu ◽  
Victor Popovici

This paper presents an original model developed by finite element method to simulate the behavior of the material to the method “Blind Hole Drilling”, to determine the residual stress. Modeling of this method is possible through the use of the “Birth and Death” which have some elements of ANSYS library. After obtaining the analysis of movements, appropriate loads, a node located from the center hole at a radius calculated. In this way it is easier to estimate the stresses and deformations of a piece. Several measurements are made and based on this model is given in ANSYS. In this way we can have a map of tensions and deformations in a material


2013 ◽  
Vol 785-786 ◽  
pp. 1229-1235 ◽  
Author(s):  
Chun Run Li ◽  
Zhi Peng Zhang ◽  
Yi Ming Zhang ◽  
Zong Tao Fang

This paper takes the Q345 steel as an example, adopting finite element simulative analysis to study the influence of solid-state transformation on welding residual stress. By setting the value of the thermal strain in different temperature, the change in volume caused by the phase changes is equivalent to the thermal strain. Simulation includes two cases which are consideration of phase transformations and not consideration. The results showed that the distribution trend of the longitudinal stress of the weld zone is substantially the same in the two simulations. In the case of not consider the simulation of phase change, there is a lot of stress in the weld zone and the heat affected zone and the maximum value could be 427 MPa. In regard to transverse stress, phase change not only affects the value of the stress, but also changes the direction of the stress of the weld middle portion. Welding residual stress is also measured by X-ray. Phase change simulation and experimental results are in good agreement, it can be concluded that phase change in the welding process will result in a significant impact on the distribution of the residual stress, which could not be ignored in the finite element simulation of welding process.


Sign in / Sign up

Export Citation Format

Share Document