scholarly journals Experimental study on tribological characteristics in coke powder lubrication

2020 ◽  
Vol 12 (8) ◽  
pp. 168781402094045
Author(s):  
Jin Xiang ◽  
Zheng Yan

Pushing coke is an important process in coke oven production. In the process of pushing coke, under the three-body contact state of steel, coke powder, and refractory brick, coke powder plays an important role in lubrication. In this article, a study on the macro- and micro-behavior and mechanism of coke powder lubrication is carried out through tribological tests. The results show that in the process of sliding friction, coke powder plays a role of lubrication through forming a powder layer and shearing occurred inside the powder layer. The load keeps at 5 MPa, under the lower velocity, the powder layer is thinner and delamination occurred in local position. While under the higher velocity, the coke powder can form a compact and complete powder layer and exhibit better lubrication characteristics. However, when the velocity increases to 0.52 m/s, the continuous powder layer is not formed, so the friction coefficient is higher, the frictional surface wears seriously and results in vibration to occur. The velocity keeps at 0.40 m/s, and the powder layer inclines to deteriorate under higher load. When the load increases to 20 MPa, a part of the powder layer is damaged, and severe wear occurs on the surface.

2008 ◽  
Vol 130 (4) ◽  
Author(s):  
Dinçer Bozkaya ◽  
Sinan Müftü

In chemical mechanical polishing (CMP), a rigid wafer is forced on a rough elastomeric polishing pad, while a slurry containing abrasive particles flows through the interface. One of the important factors that influence the material removal rate in CMP is the magnitude of contact force transmitted to the abrasive particles trapped at the contact interface. The total push-down force is distributed to the direct contact between the wafer and the pad, and to the three-body contact between the wafer, the pad, and the abrasive particles. The presence of the abrasive particles alters the asperity contact, which otherwise can be described by Hertz contact relationships. In this study, the effect of the interfacial particles on the single asperity contact is investigated. An approach used by Greenwood and Tripp (1967, “The Elastic Contact of Rough Spheres,” ASME J. Appl. Mech., 34, pp. 153–160) to study the contact of rough spheres is utilized since the presence of the particles provides a rough character to the contact. The results show that the contact behavior becomes non-Hertzian with decreasing contact force and increasing elastic modulus, particle size, and particle concentration. The role of the interfacial particles is to spread the contact over a larger area while lowering the maximum contact pressure at the center of contact predicted by Hertz contact. The conditions required to transfer the contact force on the particles effectively are also described.


Science ◽  
2017 ◽  
Vol 355 (6323) ◽  
pp. 377-380 ◽  
Author(s):  
Richard J. Fletcher ◽  
Raphael Lopes ◽  
Jay Man ◽  
Nir Navon ◽  
Robert P. Smith ◽  
...  

In many-body systems governed by pairwise contact interactions, a wide range of observables is linked by a single parameter, the two-body contact, which quantifies two-particle correlations. This profound insight has transformed our understanding of strongly interacting Fermi gases. Using Ramsey interferometry, we studied coherent evolution of the resonantly interacting Bose gas, and we show here that it cannot be explained by only pairwise correlations. Our experiments reveal the crucial role of three-body correlations arising from Efimov physics and provide a direct measurement of the associated three-body contact.


1993 ◽  
Vol 07 (29n30) ◽  
pp. 1883-1895 ◽  
Author(s):  
A. MAITI ◽  
C.J. BRABEC ◽  
J. BERNHOLC

Scaling arguments are used to show that above a critical size of several thousand atoms, there is a stability crossover from single to multilayer cages. Conjugate gradient minimization using a classical three-body interatomic potential, as well as tight-binding electronic structure calculations yield ground-state configurations for large fullerene shells that are polyhedral with clearly faceted geometry. The structure, energetics and configurational entropy associated with low-energy defects are calculated and the number of defects estimated as a function of temperature. The role of these thermally generated defects on the shape of large fullerenes is investigated in order to explain the nearly spherical shapes of the newly discovered carbon “onions”.


2019 ◽  
Vol 17 (1) ◽  
pp. 1288-1300
Author(s):  
Anna Kwiecińska-Mydlak ◽  
Marcin Sajdak ◽  
Katarzyna Rychlewska ◽  
Jan Figa

AbstractCoke oven liquor is one of the most contaminated liquid streams generated by the coal processing industry, thus its proper treatment and utilization is crucial for sustainable and environmentally neutral plant operation. The conventional wastewater treatment process comprises of chemical and biological processes. Within the current research the detailed role of chemical treatment is described. Commercially available iron-based coagulants (PIX100, PIX100COP, PIX113, PIX116) were tested to understand their removal efficiency and impact on the stream parameters. The influence of iron dose in the range of 300-500 mgFe/L on the process performance was also examined.It was found that the main role of chemical treatment was to bind toxicants harmful to activated sludge microorganisms, i.e. free and complex cyanides and sulphides. Among the tested iron-based conventional coagulants ferrous salts were more efficient than ferric salts. It was also observed that efficiency of the process strongly depended on wastewater properties (especially in regard to pH, which should be in the range of 9-10) and the coagulant selection needed to be done individually for a given wastewater type. The removal rates of particular contaminants were diversified and for free cyanides, complex cyanides and sulphides they were in the range of 23-91%, -156-77% and -357-98%, respectively. The expected, simultaneous removal of chemical oxygen demand (COD) during the treatment was not observed and even the parameter value increased after the process due to probable formation of compounds less vulnerable to oxidation.


2018 ◽  
Vol 18 (3) ◽  
pp. 948-955 ◽  
Author(s):  
Q.B. Nguyen ◽  
D.N. Luu ◽  
S.M.L. Nai ◽  
Z. Zhu ◽  
Z. Chen ◽  
...  
Keyword(s):  

2017 ◽  
Author(s):  
D.A. Turner ◽  
L. Alonso-Crisostomo ◽  
M. Girgin ◽  
P. Baillie-Johnson ◽  
C. R. Glodowski ◽  
...  

AbstractEstablishment of the three body axes is a critical step during animal development. In mammals, genetic studies have shown that a combination of precisely deployed signals from extraembryonic tissues position the anteroposterior axis (AP) within the embryo and lead to the emergence of the dorsoventral (DV) and left-right (LR) axes. We have used Gastruloids, embryonic organoids, as a model system to understand this process and find that they are able to develop AP, DV and LR axes as well as to undergo axial elongation in a manner that mirror embryos. The Gastruloids can be grown for 160 hours and form derivatives from ectoderm, mesoderm and endoderm. We focus on the AP axis and show that in the Gastruloids this axis is registered in the expression of T/Bra at one pole that corresponds to the tip of the elongation. We find that localisation of T/Bra expression depends on the combined activities of Wnt/β-Catenin and Nodal/Smad2,3 signalling, and that BMP signalling is dispensable for this process. Furthermore, AP axis specification occurs in the absence of both extraembryonic tissues and of localised sources of signalling. Our experiments show that Nodal, together with Wnt/β-Catenin signalling, is essential for the expression of T/Bra but that Wnt signalling has a separable activity in the elongation of the axis. The results lead us to suggest that, in the embryo, the role of the extraembryonic tissues might not be to induce the axes but to bias an intrinsic ability of the embryo to break its initial symmetry and organise its axes.One sentence summaryCulture of aggregates of defined number of Embryonic Stem cells leads to self-organised embryo-like structures which, in the absence of localised signalling from extra embryonic tissues and under the autonomous influence of Wnt and Nodal signalling, develop the three main axes of the body.


Author(s):  
Rajendra Gunda ◽  
Rajendra Singh

Chief objective of this article is to evaluate the role of sliding friction in gear dynamics, and more specifically the effect of the periodic variations in mesh stiffness, load distribution and friction torque during a mesh cycle. A non-unity speed ratio spur gear is considered. Only the torsional degree of freedom of the gear pair, with ideal Coulomb friction law, is analyzed. Previous studies by Vaishya and Singh [1–3] make idealized assumptions about temporal (or spatial) variation of mesh stiffness and load sharing in order to obtain more tractable analytical solutions. In our formulation, an accurate Finite Element/Contact Mechanics analysis code [4] is run in the static mode to compute the mesh stiffness and load distribution at every time instant of the mesh. The computed parametric variation of stiffness is then incorporated into our dynamic formulation that includes frictional torques. Next, we use appropriate numerical techniques to solve for the dynamic response in time domain. This study, though preliminary in nature, examines the effects of pinion speed, coefficient of friction and mean input torque. This, along with work in progress, should yield further insights into the role of friction sources in gear vibro-acoustics.


Sign in / Sign up

Export Citation Format

Share Document