scholarly journals Parameter identification of Bouc-Wen model for Magnetorheological (MR) fluid Damper by a Novel Genetic Algorithm

2020 ◽  
Vol 12 (8) ◽  
pp. 168781402095054
Author(s):  
Birhan Abebaw Negash ◽  
Wonhee You ◽  
Jinho Lee ◽  
Kwansup Lee

In this research, novel genetic algorithm (nGA) is proposed for Bouc-Wen modle parameters esstimation for magnetorheological (MR) fluid dampers. The optimization efficiency is improved by modifying the crossover and mutation steps of a GA. In the crossover stage, the probability of reproducing offspring from the same parent (same mother and father chromosome) is done to be zero, which may happen in the standard GA, and the probability of a chromosome to be selected for mating is based on error rank weighting of the chromosomes. Additional fitness evaluation of chromosomes will take place in between the crossover and mutation steps to save the best chromosome found so far, which is not implemented in the standard genetic algorithm (GA). The model is validated by comparing its simulation output force ( Fsim) with experimentally generated MR damper force ( Fexp). The mean absolute error, standard deviation and number of generations for convergence are taken as a criterias for performance evaluation. With these ctriterias, the proposed novel GA outperform better than the other researches. The accuracy is improved by 46.67% compared to standard GA. The proposed novel GA for Bouc-Wen model parameter identification can be used for any MR damper control system with better accuracy.

2019 ◽  
Vol 9 (19) ◽  
pp. 4189 ◽  
Author(s):  
Darson Dezheng Li ◽  
Declan Finn Keogh ◽  
Kevin Huang ◽  
Qing Nian Chan ◽  
Anthony Chun Yin Yuen ◽  
...  

Magnetorheological (MR) fluid is a smart material fabricated by mixing magnetic-responsive particles with non-magnetic-responsive carrier fluids. MR fluid dampers are able to provide rapid and reversible changes to their damping coefficient. To optimize the efficiency and effectiveness of such devices, a computational model is developed and presented where the flow field is simulated using the computational fluid dynamics approach, coupled with the magnetohydrodynamics model. Three different inlet pressure profiles were designed to replicate real loading conditions are examined, namely a constant pressure, a sinusoidal pressure profile, and a pressure profile mimicking the 1994 Northbridge earthquake. When the MR fluid damper was in its off-state, a linear pressure drop between the inlet and the outlet was observed. When a uniform perpendicular external magnetic field was applied to the annular orifice of the MR damper, a significantly larger pressure drop was observed across the annular orifice for all three inlet pressure profiles. It was shown that the fluid velocity within the magnetized annular orifice decreased proportionally with respect to the strength of the applied magnetic field until saturation was reached. Therefore, it was clearly demonstrated that the present model was capable of accurately capturing the damping characteristics of MR fluid dampers.


2017 ◽  
Author(s):  
Andysah Putera Utama Siahaan

Preparation of courses at every university is done by hand. This method has limitations that often cause collisions schedule. In lectures and lab scheduling frequent collision against the faculty member teaching schedule, collisions on the class schedule and student, college collision course with lab time, the allocation of the use of the rooms were not optimal. Heuristic method of genetic algorithm based on the mechanism of natural selection; it is a process of biological evolution. Genetic algorithms are used to obtain optimal schedule that consists of the initialization process of the population, fitness evaluation, selection, crossover, and mutation. Data used include the teaching of data, the data subjects, the room data and time data retrieved from the database of the Faculty of Computer Science, Universitas Pembangunan Panca Budi. The data in advance through the stages of the process of genetic algorithms to get optimal results The results of this study in the form of a schedule of courses has been optimized so that no error occurred and gaps.


2019 ◽  
Vol 67 (6) ◽  
pp. 493-507
Author(s):  
Ji-Hwan Shin ◽  
Jin-Ho Lee ◽  
Won-Hee You ◽  
Moon K. Kwak

A semi-active virtual tuned mass damper (SAVTMD) control algorithm is developed to suppress vibrations of a railway vehicle by using magneto-rheological (MR) damper. To this end, a virtual-tuned-mass-damper control algorithm analogous to the tuned mass damper was developed prior to the semi-active application. The proposed SAVTMD control algorithm uses the acceleration of the car body directly, so that it is more practical than the sky-hook control algorithm that uses the velocity of the car body. The application of the SAVTMD control to a real MR fluid damper is discussed, and a step-by-step procedure to calculate the command voltage to the driver of the MR fluid damper is presented. A hardwarein-the-loop simulation system developed in the previous study is used to test the SAVTMD control algorithm. The theoretical and experimental results showed that the proposed SAVTMD control algorithm is more effective than is the semi-active sky-hook control in suppressing vibrations of the car body of the railway vehicle by the MR damper.


2014 ◽  
Vol 903 ◽  
pp. 279-284 ◽  
Author(s):  
Mohd Azraai Razman ◽  
Gigih Priyandoko ◽  
Ahmad Razlan Yusoff

This paper present parameter identification fitting which are employed into a current model. Irregularity hysteresis of Bouc-Wen model is colloquial with magneto-rheological (MR) fluid damper. The model parameters are identified with a Particle Swarm Optimization (PSO) which involves complex dynamic representation. The PSO algorithm specifically determines the best fit value and decrease marginal error which compare to the experimental data from various operating conditions in a given boundary.


Robotica ◽  
2006 ◽  
Vol 24 (6) ◽  
pp. 699-710 ◽  
Author(s):  
Chee-Meng Chew ◽  
Geok-Soon Hong ◽  
Wei Zhou

In our recent work, we have proposed a novel force control actuator system called series damper actuator (SDA). We have since built an SDA system based on magneto-rheological fluid (MR) damper. In this paper, the dynamics property of SDA system based on the MR fluid damper (SMRDA) is investigated. The effect of the extra dynamics introduced by the MR fluid damper is revealed by comparing the SMRDA with the SDA system based on a linear Newtonian viscous damper (SNVDA). To linearize the constitutive property of the MR fluid damper, a modified Bingham model is proposed. A force feedback control loop is implemented after the linearization. An experimental SMRDA is built to illustrate the performance of the SDA system.


Author(s):  
S. Siva Kumar ◽  
K.S. Raj Kumar ◽  
Navaneet Kumar

Magnetorheological (MR) fluid damper has been designed, fabricated and tested to find the stiffness and damping characteristics. Experimentally the MR damper has been tested to analyse the behaviour of MR fluid as well as to obtain the stiffness for varying magnetic field. MR damper mathematical model has been developed for evaluating dynamic response for experimentally obtained parameters. The experimental results show that the increase of applied electric current in the MR damper, the damping force will increase remarkably up to the saturation value of current. The numerical simulation results that stiffness of the MR damper can be varied with the current value and increase the damping forces with the reduced amplitude of excitation. Experimental and theoretical results of the MR damper characteristics demonstrate that the developed MR damper can be used for vibration isolation and suppression.


Author(s):  
T. S. Aravindhan ◽  
K. Gupta

Application of two smart materials, namely shape memory alloy (SMA) and magnetorheological fluid (MRF) for rotor vibration control is explored to control the synchronous vibration of rotors crossing resonance condition. First a single degree of freedom system is analyzed to study the effect of SMA and MR fluid damper individually, and then the simulations are repeated to find the feasibility of using the two smart materials simultaneously. An MRF damper is designed, fabricated and installed on a rotor system. The fabricated MR damper is tested and an ANFIS model is trained to predict the damper force in the simulations carried out. The experimental rotor model is analyzed using finite element method in Matlab™. Simulations are carried out to study the effect of MR damper on rotor vibration response. Experimental results obtained from the rotor model with the fabricated MRF damper show considerable reduction in peak vertical amplitude as the current in the MR damper coils is increased. A good correlation between the theoretical and experimental results is observed.


2011 ◽  
Vol 287-290 ◽  
pp. 2816-2821
Author(s):  
Shi Sha Zhu ◽  
Yin Zhao ◽  
Li Juan Qu

The structure principle and working model of the MR fluid damper using in the automotive suspension are described in this paper. It is concluded that the damping force is related to structure parameters, shear yield stress and viscosity of MR fluid through analysis result. As the effective length of damping channel under magnet field is restricted to the configuration of MR damper, a new MR damper with optimizing the damping channel of lord RD-1005-3 MR damper is presented and mechanical models are severally established for the two MR shock absorbers. It has been shown that the maximum damping force of new damper has dramatically increased comparing with the original one through external analysis.


2012 ◽  
Vol 490-495 ◽  
pp. 3427-3431
Author(s):  
Xiao Mei Xu ◽  
Cai Min Zeng

In vibration control field magneto-rheological (MR) fluid dampers are semi-active control devices that have recently begun to receive more attention. This paper presents a new type of MR fluid damper with external coil. The new structure of the damper was optimized and analyzed based on a static magnetic analysis with the help of electromagnetic finite element analysis (FEA) using the software of ANSYS. The damping characteristics of the damper were theoretically researched. Research results show that the designed MR fluid damper with external coil has wider scope of damping adjustment and strong energy-dissipating ability. The study method in this paper and the obtained results will help designers to create more efficient and reliable MR fluid dampers.


Sign in / Sign up

Export Citation Format

Share Document